2xy-6x+3y=-6
Chứng minh rằng
3y( x+1 -6x)-6 / 3y -6 = 2 (y+3)+ 2xy+6x / 2y+6
(
Chứng minh đẳng thức : 3y(x+1)-6x-6 / 3y-6 = 2(y+3)+2xy+6 / 2y+6 (y khác 2 , -3 )
vào thử học 24h để hỏi thử xem biết đâu được
Cm: \(\frac{3y\left(x+1\right)-6x-6}{3y-6}\)=\(\frac{2\left(y+3\right)+2xy+6x}{2y+6}\)
Kquả của phép nhân 2xy(3x^2+4x-3y)là: A. 5x^3y+6x^2y-5xy^2 B.5x^3y+6x^2y+5xy^2 C.6x^3y+8x^2y-6xy^2 D.6x^3y+8x^2y+6xy^2
\(A=\left(-6x^7y^6\right)\left(8x^3y^3\right)=\left(-6.8\right).\left(x^7.x^3\right).\left(y^6.y^3\right)=-48x^{10}y^9\).
\(B=-7xy^2-2xy+6xy^2+5xy+6=\left(-7xy^2+6xy^2\right)+\left(-2xy+5xy\right)+6=-xy^2+3xy+6\)
1 phân tích đa thứ thành nhân tử:
a)6x^3y^2-12x^3y^4+18x^3y^5
b)3xy+y^2+6x+2y
2 tìm x biết:a)6x(x-8)=0
b)x^2+6x-6=0
3 cho biểu thức 3(x^3+y):(x^2-2xy+y^2)và thay x =2 và y=5
rút gọn rồi tìm gtln của p
p=\(\frac{8x^5y^6+2x^3y^2}{2xy^2}-\frac{6x^4y^2-3x^3y^2}{3x^3y^2}\)
Lời giải:
\(P=\frac{2xy^2(4x^4y^4+x^2)}{2xy^2}-\frac{3x^3y^2(2x-1)}{3x^3y^2}=4x^4y^4+x^2-(2x-1)\)
\(=4x^4y^4+(x^2-2x+1)=(2x^2y^2)^2+(x-1)^2\)
Do $(2x^2y^2)^2\geq 0; (x-1)^2\geq 0$ với mọi $x,y\in\mathbb{R}$
Do đó $P\geq 0$
Vậy GTNN của $P$ là $0$. Dấu "=" xảy ra khi $2x^2y^2=0$ và $x-1=0$ hay $y=0; x=1$
\(\left\{{}\begin{matrix}3x-6\sqrt{2x-4}=4\sqrt{3y-9}-2y\\6x^3-3x^2y+2xy+4=y^2+4x+6x^2\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\x^2+2xy=6x+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+xy\right)^2=2x+9\\xy=3x+3-\dfrac{x^2}{2}\end{matrix}\right.\) \(\Rightarrow\left(\dfrac{x^2}{2}+3x+3\right)^2=2x+9\)( đến đây là phương trình 1 ẩn rồi, tự giải tiếp)