Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Dũng An
Xem chi tiết
Hoàng Đạt
27 tháng 9 2018 lúc 21:39

a(a+2b)3-b(2a+b)3

=(2a+b)3.(a-b)

Hà Thiên Lộn
Xem chi tiết
NGUYỄN HƯƠNG GIANG
2 tháng 8 2018 lúc 18:47

a( a+2b)^3 - b( 2a+b)^3

=a (a^3 + 2b^3) -b (2a^3 + b^3)

=a^4+ 2ab^3 - 2ab^3 - b^4

=( a^4-b^4) +(2ab^3-2ab^3)

=a-b

Chúc bạn hk tốt, k ch mk nha

Subin
Xem chi tiết
Trần Hoàng Uyên Nhi
Xem chi tiết
super broly
21 tháng 10 2016 lúc 23:10

a(a^3+6a^2b+12ab^2+8b^3)-b(8a^3+12a^2b+6ab^2+b^3)

Subin
Xem chi tiết
ST
9 tháng 6 2018 lúc 15:53

\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)

\(=\left(a+b-2c+b+c-2a\right)\left[\left(a+b-2c\right)^2-\left(a+b-2c\right)\left(b+c-2a\right)+\left(b+c-2a\right)^2\right]+\left(c+a-2b\right)^3\)

\(=\left(c+a-2b\right)^3-\left(a-2b+c\right)\left[\left(a+b-2c\right)^2-\left(a+b-2c\right)\left(b+c-2a\right)+\left(b+c-2a\right)^2\right]\)

\(=\left(c+a-2b\right)\left[\left(c+a-2b\right)^2-\left(a+b-2c\right)^2+\left(a+b-2c\right)\left(b+c-2a\right)-\left(b+c-2a\right)^2\right]\)

\(=\left(c+a-2b\right)\left[\left(c+a-2b+a+b-2c\right)\left(c+a-2b-a-b+2c\right)+\left(a+b-2c\right)\left(b+c-2a\right)-\left(b+c-2a\right)^2\right]\)

\(=\left(c+a-2b\right)\left[\left(2a-b-c\right)\left(3c-3b\right)-\left(a+b-2c\right)\left(2a-b-c\right)-\left(b+c-2a\right)^2\right]\)

\(=\left(c+a-2b\right)\left[\left(2a-b-c\right)\left(3c-3b-a-b+2c\right)-\left(b+c-2a\right)^2\right]\)

\(=\left(c+a-2b\right)\left[\left(2a-b-c\right)\left(5c-a-4b\right)-\left(b+c-2a\right)^2\right]\)

\(=\left(c+a-2b\right)\left[\left(b+c-2a\right)\left(a+4b-5c\right)-\left(b+c-2a\right)^2\right]\)

\(=\left(c+a-2b\right)\left(b+c-2a\right)\left(a+4b-5c-b-c+2a\right)\)

\(=\left(c+a-2b\right)\left(b+c-2a\right)\left(3a+3b-6c\right)\)

\(=3\left(c+a-2b\right)\left(b+c-2a\right)\left(a+b-2c\right)\)

Nguyễn Tất Đạt
9 tháng 6 2018 lúc 15:36

\(B=\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)

Đặt: \(a+b-2c=x;b+c-2a=y;c+a-2b=z\)

\(\Rightarrow B=x^3+y^3+z^3=\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Ta thấy: \(x+y+z=a+b-2c+b+c-2a+c+a-2b=0\)

\(x+y=a+b-2c+b+c-2a=2b-a-c\)

\(y+z=b+c-2a+c+a-2b=2c-a-b\)

\(z+x=c+a-2b+a+b-2c=2a-b-c\)

Thay vào B \(\Rightarrow B=0-3\left(2b-a-c\right)\left(2c-a-b\right)\left(2a-b-c\right)\)

Vậy \(B=-3\left(2b-a-a\right)\left(2c-a-b\right)\left(2a-b-c\right).\)

le thi khanh huyen
Xem chi tiết
Nguyễn Minh Hiển
Xem chi tiết
alibaba nguyễn
6 tháng 12 2019 lúc 16:00

\(3\left(a+3b\right)\left(b+3c\right)\left(c+3a\right)\)

Khách vãng lai đã xóa
Nguyễn Anh Dũng An
Xem chi tiết
Hoàng Đạt
27 tháng 9 2018 lúc 21:44

=-a(a+2b)3-b(2a+b)3

=(2a+b)3.(-a-b)

Pham Van Hung
28 tháng 9 2018 lúc 12:00

Bạn khai triển hết ra.

      \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a^2-b^2\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a^2-b^2\right)\left(a^2-2ab+b^2\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a-b\right)^2=\left(a-b\right)^3\left(a+b\right)\)

0o0 Nhok kawaii 0o0
Xem chi tiết