Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyenmai
Xem chi tiết
Yuri
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 16:53

a.

ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)

Chia 2 vế cho cosx:

\(tanx+1=\dfrac{1}{cos^2x}\)

\(\Rightarrow tanx+1=1+tan^2x\)

\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 16:56

c.

\(\Leftrightarrow2sin2x+2sin^2x=1\)

\(\Leftrightarrow2sin2x=1-2sin^2x\)

\(\Leftrightarrow2sin2x=cos2x\)

\(\Rightarrow tan2x=\dfrac{1}{2}\)

\(\Rightarrow2x=arctan\left(\dfrac{1}{2}\right)+k\pi\)

\(\Rightarrow x=\dfrac{1}{2}arctan\left(\dfrac{1}{2}\right)+\dfrac{k\pi}{2}\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 16:55

b.

\(\Leftrightarrow4sin2x+3sin\left(\dfrac{\pi}{2}-2x\right)=5\)

\(\Leftrightarrow4sin2x+3cos2x=5\)

\(\Leftrightarrow\dfrac{4}{5}sin2x+\dfrac{3}{5}cos2x=1\)

Đặt \(\dfrac{4}{5}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{3}{5}=sina\)

\(\Rightarrow sin2x.cosa+cos2x.sina=1\)

\(\Rightarrow sin\left(2x+a\right)=1\)

\(\Rightarrow2x+a=\dfrac{\pi}{2}+k2\pi\)

\(\Rightarrow x=-\dfrac{a}{2}+\dfrac{\pi}{4}+k\pi\)

Hà Thanh
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 6 2019 lúc 18:25

Đặt \(\left|sinx-cosx\right|=a\) (\(0\le a\le\sqrt{2}\))

\(\Rightarrow1-2sinx.cosx=a^2\Rightarrow1-sin2x=a^2\Rightarrow sin2x=1-a^2\)

Phương trình trở thành:

\(a+4\left(1-a^2\right)=1\Leftrightarrow-4a^2+a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{4}< 9\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|sinx-cosx\right|=1\Leftrightarrow\left|\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\right|=1\)

\(\Leftrightarrow\left|sin\left(x-\frac{\pi}{4}\right)\right|=\frac{\sqrt{2}}{2}\Rightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin\left(x-\frac{\pi}{4}\right)=\frac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow...\)

Hao Du
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 9 2021 lúc 7:41

\(\Leftrightarrow\left(\sqrt{3}+2\right)sinx+cosx=2sin3x+2sinx\)

\(\Leftrightarrow\sqrt{3}sinx+cosx=2sin3x\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx=sin3x\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)=sin3x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=x+\dfrac{\pi}{6}+k2\pi\\3x=\dfrac{5\pi}{6}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

Kinder
Xem chi tiết
Hồng Phúc
31 tháng 5 2021 lúc 23:41

1.

ĐK: \(x\ne\dfrac{k\pi}{2}\)

\(cotx-tanx=sinx+cosx\)

\(\Leftrightarrow\dfrac{cosx}{sinx}-\dfrac{sinx}{cosx}=sinx+cosx\)

\(\Leftrightarrow\dfrac{cos^2x-sin^2x}{sinx.cosx}=sinx+cosx\)

\(\Leftrightarrow\left(\dfrac{cosx-sinx}{sinx.cosx}-1\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\cosx-sinx=sinx.cosx\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\Leftrightarrow x=-\dfrac{\pi}{4}+k\pi\)

\(\left(2\right)\Leftrightarrow t=\dfrac{1-t^2}{2}\left(t=cosx-sinx,\left|t\right|\le2\right)\)

\(\Leftrightarrow t^2+2t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow cosx-sinx=-1+\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=-1+\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\\x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=-\dfrac{\pi}{4}+k\pi;x=\dfrac{\pi}{4}+arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi;x=\dfrac{5\pi}{4}-arcsin\left(\dfrac{\sqrt{2}-1}{\sqrt{2}}\right)+k2\pi\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 5 2018 lúc 7:50

Chọn A

có 4037 giá trị của k nên có 4037 nghiệm

Jennifer Phạm
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2020 lúc 21:26

a.

\(\Leftrightarrow cosx\left[1-\left(1-2sin^2x\right)\right]-sin^2x=0\)

\(\Leftrightarrow2sin^2x.cosx-sin^2x=0\)

\(\Leftrightarrow sin^2x\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

b.

Câu b chắc chắn đề đúng chứ bạn? Vế phải ấy?

Nguyễn Việt Lâm
17 tháng 9 2020 lúc 21:29

c/

\(\left(1+cosx\right)\left(sinx-cosx+3\right)=1-cos^2x\)

\(\Leftrightarrow\left(1+cosx\right)\left(sinx-cosx+3\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow cosx=-1\)

\(\Leftrightarrow x=\pi+k2\pi\)

d.

\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)=1-sin^2x\)

\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)-\left(1+sinx\right)\left(1-sinx\right)=0\)

\(\Leftrightarrow\left(1+sinx\right)\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=k2\pi\end{matrix}\right.\)

Kinder
Xem chi tiết
Hồng Phúc
1 tháng 6 2021 lúc 0:28

1.

\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)

\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)

\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)

Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)

\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)

Hồng Phúc
1 tháng 6 2021 lúc 8:33

2.

\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)

\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)

\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Trần Ái Linh
23 tháng 12 2020 lúc 17:15

ĐK: \( \begin{cases}cotx \ne 1\\sinx \ne 0\\\end{cases} \Leftrightarrow \begin{cases}x \ne \dfrac{π}{4}+kπ\\ x \ne kπ\\\end{cases}\)

Vậy \(D=R\) \ \({\dfrac{π}{4}+kπ ; kπ | k \in Z}\)