cho tam giac ABC co BC>=AC>=AB duong phan giac AD duong cao CH cm CH>=AD
De bai : Cho tam giac ABC co AB=9 cm,BC=12 cm,BC=15 cm
a,C/m tam giac ABC vuong
b,Duong phan giac cua goc B cat AC tai D . Tinh AD,DC
c,Duong cao AH cat BD tai I. Chung minh IH.BD=IA.IB
d,Chung minh tam giac AID can
a. Xét tam giác ABC có:
AC2 + AB2 = 122 +92 = 144 + 81 =225 (cm)
BC2 = 152 = 225 (cm)
Suy ra: AC2 + AB2 = BC2
=> Tam giác ABC vuông tại A
b.
Ta có AD là phân giác của góc B
=> \(\dfrac{DA}{DC}=\dfrac{BA}{BC}\) ( Tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\dfrac{DA}{DC}=\dfrac{9}{15}=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{3}{2}\)
Suy ra: \(\dfrac{DA}{3}=\dfrac{3}{2}\Rightarrow DA=\dfrac{3.3}{2}=4,5\)
\(\dfrac{DC}{5}=\dfrac{3}{2}\Rightarrow DC=\dfrac{5.3}{2}=7,5\)
Vậy: DA = 4,5 (cm) và DC = 7,5(cm)
Cau 1: Cho tam giac ABC cuong tai A, AB=8cm; AC=15cm. Ve duong cao AH
a) chung minh AB^2= BH. BC
b) Tinh BH, CH, AH, BC
c) Ve phan giac AD cua tam giac ABC. Chung minh H nam giua B va D
d) Tinh ti so dien tich D HAC va D A.BC
Cau 2: Cho tam giac ABC vuong tai A, AB=5cm; Ac=12cm, ve duong cao AH va duong phan giac AD.
a) Tinh BC, BD
b) Chung minh D ACH: D ABC; tinh AH
c) Qua B ke duong thang vuong goc voi AB cat tia AD tai K. Chung minh AB.AD =AC. KD
.Cau 3: Cho tam giac ABC vuong A co AB = 5cm; AC=12cm. Ve dcao AH va pgiac AD cua goc BAC
a) Tih BC; BD
b) Chung minh D HAC : D ABC
c) Qua B ke duong vgoc voi BA cat AD tai k. Chung minh AB.AD= AC.KD
cho tam giac abc vuong tai a, co ab=3 cm ac=4 cm, duong phan giac ad. duong vuong goc voi dc cat ac tai e
a) cmr tam giac abc va tam giac dec dong dang
b) tinh do dai cac doan thang bc,bd
c) tinh do dai ad
d) tinh dien tich tam giac abc va dien tich tu giac abde
Cho tam giac ABC vuong tai A co AB=6cm, AC=8cm. Duong cao AH va phan giac BD cat tai I ( H thuoc BC D thuoc AC)
a) Tinh do dai AD,DC
b) tam giac AB2= BH.BC
c) cm tam giac ABI dong dang CBD
d) cm IH/IA= AD/DC
a: BC=10cm
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuong tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{BAI}=\widehat{BCD}\)
Do đó: ΔABI\(\sim\)ΔCBD
CHo tam giac ABC can tai A co goc A la goc nhon. Ve hai duong cao AD va BE cat nhau tai H ( D thuoc BC, E thuoc AC)
a, Cm: Tam giac ABD= tam giac ACD
b, Duong thang CD cat AB tai F. CM; CF la duong cao cua tam giac ABC
c; CM; EF song song BC
1.cho tam giac ABC vuong tai A ,goi AH la duong cao .biet rang \(\frac{AC}{AB}=\frac{5}{6'},BC=122cm\)
a)tinh BH,CH
b)tinh AH
2.cho tam giac ABC vuong o A,phan giac AD,duong cao AH.bietCD=68cm,BD=51cm.tinh BH,HC.
Giup mink !
Bai 1: Cho tam giac ABC co 3 goc nhon . Cac duong cao lan luot la AD,BE,CF cat nhau tai H
a.C/m tam giac AEF dong dang tam giac ABC
b.C/m tam giac AEF dong dang tam giac DBF
Bai 2: Cho tam giac ABC vuong tai A , AB=9 cm,AC=6 cm , duong cao AH , duong phan giac BD. Ke DE vuong goc BC (E thuoc BC), duong thang DE cat duong thang AB tai F .
a.Tinh BC,AH?
b.Chung minh tam giac EBF dong dang tam giac EDC
c.Goi I la giao diem cua AH va BD. Chung minh AB.BI=BH.BD
d.C/m BD vuong goc CF
e.Tinh ti so dien tich cua 2 tam giac ABC va tam giac BCD
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
Cho tam giác ABC vuông tại A AB=12cm AC=16cm duong phan giac AD đường cao AH tinh BH,CH,DH
Áp dụng hệ thức lượng tìm được \(BH=\frac{36}{5};CH=\frac{64}{5}\)(cm)
Áp dụng tính chất đường phân giác tìm được \(\frac{BD}{DC}=\frac{AB}{AC}\Leftrightarrow\frac{BD}{BC}=\frac{AB}{AB+AC}\Leftrightarrow\frac{BD}{20}=\frac{12}{12+16}=\frac{12}{28}\Rightarrow BD=\frac{20\cdot12}{28}=\frac{60}{7}\)
\(\Rightarrow HD=BD-BH=\frac{60}{7}-\frac{36}{5}=\frac{300-252}{35}=\frac{48}{35}\)(cm)
CHO TAM GIAC ABC VUONG TAI A ,CO AB=12,AC=16 .KE DUONG CAO AH
A,CUNG MINH TAM GIAC HAB DONG DANG VOI TAM GIAC ABC
B, TINH DO DAI DOAN THANG BC,AH
C,GOI AD LA DUONG PHAN GIAC CUA BAC ,DE LA DUONG PHAN GIAC CUA ADB.DUONG THNAG VUONG GOC VOI DE TAI D ,CAT ACANH AC O F.CHUNG MINH EA/EB*DB/DC*FC/FA=1
a) Xét tam giác HBA và tam giác ABC có
góc H = góc A (=90 độ)
góc ABC chung
suy ra tam giác HBA đồng dạng với tam giác ABC
b) Áp dụng định lyd Pi ta go vào tam giác vuông ABC có
BC^2= AB^2+AC^2
BC^2=12^2+16^2
BC^2 = 400
BC=căn 400 = 20 cm
+ Ta có tam HBA đồng dạng vs tam giác ABC (cmt)
suy ra HA/AC=BA/BC(t/c 2 tam giác đồng dạng)
suy ra HA/16=12/20
SUY RA HA=(16*12)/20 =9,6cm
c) ta có DE là tia phân giac
suy ra AE/EB=AD/BD 1
VÌ DF là tia p/g
suy ra FC/FADC/AD 2
TỪ 1,2 suy ra EA/EB *DB/DC*EC/FA
suy ra EA/EB*DB/DC*FC/FA =1(đfcm)