a.A = 1 + 3 + 32+ ...+ 311chia hết cho 4
a. n+3 chia hết cho n+1
b. 2n+7 chia hết cho n-3
c. 2n+9 chia hết cho n-3
d. 3n-1 chia hết cho 3-2n
bài 2
a.A=1+4+4 mũ 2+...+4 mũ 59 chia hết cho 5,21,85
b.B=5+5 mũ 3 +5 mũ 5 +...+5 mũ 203 chia hết cho 31
Ta có : n + 3 = (n + 1) + 2
Do n + 1\(⋮\)n + 1
Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}
Lập bảng :
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1
b) Ta có : 2n + 7 = 2.(n - 3) + 13
Do n - 3 \(⋮\)n - 3
Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ; 13}
Lập bảng :
n - 3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3
Bài 1 :
a) \(n+3⋮n+1\)
\(a+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b) c) d) tương tự
Bài 2 :
\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)
\(A=5+4^2\cdot5+...+4^{58}\cdot5\)
\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)
Còn lại : tương tự
Tính bằng cách thuận tiện:
a.A=1/2+1/4+1/8+1/16+1/32+1/64
b.B=1/3+1/9+1/27+1/81+1/243
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(A=1-\frac{1}{64}\)
\(A=\frac{63}{64}\)
\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(3B-B=1-\frac{1}{243}\)
\(2B=\frac{242}{243}\)
\(B=\frac{242}{243}\div2\)
\(B=\frac{121}{243}\)
a.A=1/2+1/4+1/8+1/16+1/32+1/64
A= \(\frac{1}{1\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot4}+\frac{1}{4\cdot4}+\frac{1}{4\cdot8}+\frac{1}{8\cdot8}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{8}\)
= 1 - 1/8 = 7/8
b.B=1/3+1/9+1/27+1/81+1/243
B= \(\frac{1}{1\cdot3}+\frac{1}{3\cdot3}+\frac{1}{3\cdot9}+\frac{1}{9\cdot9}+\frac{1}{9\cdot27}\)
= 1 - 1/27 = 26/27
Cho A=1-2+3-4+...+99-100 a.A có chia hết cho 2,cho 3, cho 5 không?Vì sao? b.A có bao nhiêu ước tự nhiên? Có bao nhiêu ước nguyên ?
Cho a,b thuộc N, chứng minh rằng:
a. Nếu a+ 2.b chia hết cho 5 thì a.a + 4.b chia hết cho 5
b. Nếu 3.a - 4.b chia hết cho 5 thì a + 2.b chia hết cho 5
Chứng tỏ rằng :
a.A=1+2+2^2+2^3+...+2^2017 chia hết cho 5
b.B=3+3^2+3^3+...+3^30 chia hết cho 13
a.A=4+2^2+2^3+2^4+.......2^20
Câu2:
a.Chứng minh rằng nếu (ab+cd+eg)chia hết cho 11 thì abcdeg chia hết cho 11
b.Chứng minh rằng 10^28+8 chia hết cho 72
Ta có:
Đặt B=\(2^2+2^3+2^4+...+2^{20}\)
⇒2 B=\(2^3+2^4+2^5+...+2^{21}\)
\(\Rightarrow2B-B=2^{21}-2^2\)
\(\Rightarrow A=4+B=2^{21}-2^2+4=2^{21}\)
A=1+3+32+33+...+311
Chứng minh rằng:
a.A chia hết cho 13
b.B chia hết cho 40
cho a,b là các số nguyên .chứng minh rằng a.a.(a.a+b.b).(a.a-b.b) chia hết cho 30
Nếu $a$ là số lẻ và $b$ chẵn thì đề sai bạn nhé.
Giup mình với toán nâng cao ạ chứng minh rằng A=4+4 mux2+4 mux3+....+4mux23+4mux23 ..câu a.A chia hết cho 21 và A chia hết cho 20
Sửa đề: A=4+4^2+4^3+...+4^23+4^24
A=4(1+4+4^2)+...+4^22(1+4+4^2)
=21(4+...+4^22) chia hết cho 21
A=(4+4^2)+4^2(4+4^2)+...+4^22(4+4^2)
=20(1+4^2+...+4^22) chia hết cho 20