lim(\(\dfrac{1}{5}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{5^3}\)+...+\(\dfrac{1}{5^n}\))=
Tính \(lim\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{2}{5}+\left(\dfrac{2}{5}\right)^2+...+\left(\dfrac{2}{5}\right)^n}\)
\(=\lim\dfrac{1.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\dfrac{1}{3}}}{1.\dfrac{1-\left(\dfrac{2}{5}\right)^{n+1}}{1-\dfrac{2}{5}}}=\lim\dfrac{9}{10}.\dfrac{1-\left(\dfrac{1}{3}\right)^{n+1}}{1-\left(\dfrac{2}{5}\right)^{n+1}}=\dfrac{9}{10}\)
Tính giới hạn sau lim\(\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{2}{5}+\left(\dfrac{2}{5}\right)^2+...+\left(\dfrac{2}{5}\right)^n}\)
\(=lim\dfrac{\left(1-\dfrac{1}{3^{n-1}}\right)\left(1-\dfrac{2}{5}\right)}{\left(1-\dfrac{1}{3}\right)\left(1-\left(\dfrac{2}{50}\right)^{n+1}\right)}\\ =lim\dfrac{9}{10}\left(\dfrac{1-\dfrac{1}{3^{n-1}}}{1-\left(\dfrac{-2}{5}\right)^{n+1}}\right)\\ =\dfrac{9}{10}\)
Tính :6/ lim\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
7/ lim \(\dfrac{\sqrt{n^3-2n+5}}{3+5n}\)
10/ lim\(\dfrac{1+3+5+...+\left(2n+1\right)}{3n^3+4}\)
Tìm \(lim\) \(u_n\), biết \(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\).
A. \(lim\) \(u_n=\dfrac{3}{4}\).
B. \(lim\) \(u_n=\dfrac{3}{5}\).
C. \(lim\) \(u_n=\dfrac{2}{3}\).
D. \(lim\) \(u_n=\dfrac{4}{3}\).
Giải thích chi tiết bước làm và tại sao lại làm như vậy.
\(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)
\(=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+...+\dfrac{1}{\left(n-1\right)\cdot\left(n+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+...+\dfrac{2}{\left(n-1\right)\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{\left(n-1\right)}-\dfrac{1}{\left(n+1\right)}\right)\)
\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{n+1}\right)\)
\(=\dfrac{3}{4}-\dfrac{1}{2n+2}\)
\(\lim\limits u_n=\lim\limits\left(\dfrac{3}{4}-\dfrac{1}{2n+2}\right)\)
\(=\lim\limits\dfrac{3}{4}-\lim\limits\dfrac{1}{2n+2}\)
\(=\dfrac{3}{4}-\lim\limits\dfrac{\dfrac{1}{n}}{2+\dfrac{1}{n}}\)
=3/4
=>Chọn A
Tìm giới hạn các dãy số sau
a) \(lim\dfrac{2^n+6^n-4^{n-1}}{3^n+6^{n+1}}\)
b) \(lim\dfrac{1+3+5+...+\left(2n+1\right)}{3n^2+4}\)
c) \(lim\dfrac{1+2+3+...+n}{n^2-3}\)
d) \(lim\left[\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}\right]\)
e) \(lim\left[\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\right]\)
\(a=lim\dfrac{\left(\dfrac{2}{6}\right)^n+1-\dfrac{1}{4}\left(\dfrac{4}{6}\right)^n}{\left(\dfrac{3}{6}\right)^n+6}=\dfrac{1}{6}\)
\(b=\lim\dfrac{\left(n+1\right)^2}{3n^2+4}=\lim\dfrac{n^2+2n+1}{3n^2+4}=\lim\dfrac{1+\dfrac{2}{n}+\dfrac{1}{n^2}}{3+\dfrac{4}{n^2}}=\dfrac{1}{3}\)
\(c=\lim\dfrac{n\left(n+1\right)}{2\left(n^2-3\right)}=\lim\dfrac{n^2+n}{2n^2-6}=\lim\dfrac{1+\dfrac{1}{n}}{2-\dfrac{6}{n^2}}=\dfrac{1}{2}\)
\(d=\lim\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right]=\lim\left[1-\dfrac{1}{n+1}\right]=1\)
\(e=\lim\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right]\)
\(=\lim\dfrac{1}{2}\left[1-\dfrac{1}{2n+1}\right]=\dfrac{1}{2}\)
Tính các giới hạn
a) \(lim\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}\)
\(lim\left(n^3+n\sqrt{n}-5\right)\)
Giúp mình với ạ
a/ \(\lim\limits\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}=\lim\limits\dfrac{\dfrac{\left(\dfrac{1}{3}\right)^{n+1}-1}{\dfrac{1}{3}-1}}{\dfrac{\left(\dfrac{1}{2}\right)^{n+1}-1}{\dfrac{1}{2}-1}}=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}=3\)
b/ \(\lim\limits\left(n^3+n\sqrt{n}-5\right)=+\infty-5=+\infty\)
Tìm các giới hạn sau:
a) \(lim\sqrt[3]{-n^3+2n^2-5}\)
b) \(lim\dfrac{1}{\sqrt{n+1}-\sqrt{n}}\)
c) \(lim\left(\dfrac{1}{n+1}-n\right)\)
d) \(lim\left(\dfrac{2n^2-1}{n+1}-2n\right)\)
e) \(lim\dfrac{2n^3+n^2-3n+1}{2-3n}\)
\(a=\lim n\left(\sqrt[3]{-1+\dfrac{2}{n}-\dfrac{5}{n^3}}\right)=+\infty.\left(-1\right)=-\infty\)
\(b=\lim\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)
\(c=\lim n\left(\dfrac{1}{n^2+n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim\left(\dfrac{2n^2-1-2n\left(n+1\right)}{n+1}\right)=\lim\left(\dfrac{-1-2n}{n+1}\right)=-2\)
\(e=\lim\dfrac{2n^2+n-3+\dfrac{1}{n}}{\dfrac{2}{n}-3}=\dfrac{+\infty}{-3}=-\infty\)
Tính: \(I=lim\left(\dfrac{1}{2}+\dfrac{3}{2^2}+\dfrac{5}{2^3}+...+\dfrac{2n-1}{2^n}\right)\)
Tìm các giới hạn sau:
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(b,lim\dfrac{-3n^3+1}{2n+5}\)
\(c,lim\dfrac{n^3-2n+1}{-3n-4}\)
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)
\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)
\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)