Chứng minh BĐT sau:
\(a^2+b^2+c^2\ge a.\left(b+c\right)\)
Ai giúp đc cám ơn nha!<3
Với a, b, m, n dương ; C/m :
\(a^{m+n}+b^{m+n}\ge\frac{1}{2}\left(a^m+b^m\right)\)
Mình cần lắm ><, ai làm đc thì giúp mình nha. Cám ơn nhiều !
À mình nghĩ đề sai r, xin lỗi nha, mn ko cần làm nữa đâu ....
vt mỗi cái đề cho người khác lm
haazzzzzzzzzzzzzzz
chi kute
chứng minh các BĐT:
a)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2;\)
b)\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
a) Áp dụng Cauchy-Schwarz:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)
b) Áp dụng AM-GM:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(a^2+b^2+c^2\ge ab+bc+ac\) (cm ở trên r nên khỏi cm lại đi)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2\)
Kết hợp 2 điều trên:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
a)2(a2+b2) ≥ (a+b)2
⇔ 2a2+2b2 ≥ a2+2ab+b2
xét hiệu
⇔ 2a2+2b2-a2-2ab-b2 ≥ 0
⇔ a2-2ab+b2 ≥ 0
⇔ (a-b)2 ≥ 0 (luôn đúng )
=> đpcm
a )2(a^2+b^2)\(\ge\)(a+b)^2\(\Leftrightarrow\)2a^2+2b^2\(\ge\)a^2+b^2+2ab
\(\Leftrightarrow\)2a^2+2b^2-a^2-b^2-2ab\(\ge\)0
\(\Leftrightarrow\)(a-b)^2\(\ge\)0 (2)
(2) đúng nên 1 đúng
b )
chứng minh vế 1 3(a^2+b^2+c^2)\(\ge\)(a+b+c)^2
\(\Leftrightarrow\)3a^2+3b^2+3c^2-a^2-b^2-c^2-2ab-2bc-2ca\(\ge\)0
\(\Leftrightarrow\)2a^2+2b^2+2c^2-2ab-2ac-2bc\(\ge\)0
\(\Leftrightarrow\)(a-b)^2+(b-c)^2+(c-a)^2\(\ge\)0 luôn đúng
chứng minh vế 2 (a+b+c)^2\(\ge\)3(ab+bc+ca)
\(\Leftrightarrow\)a^2+b^2+c^2-2ab-2ac-2bc\(\ge\)0
cm như trên suy ra đpcm
Áp BĐT Cô-si
1. Cho a,b,c \(\ge\) 0. Chứng minh các BĐT sau
a. \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
b. \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
c. \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{c}{c+a}\le\frac{a+b+c}{2}\)
d. \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)
thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)
Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)
\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)
\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)
b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)
Vậy bđt ban đầu dc chứng minh.
c/ \(\left(a+b\right)^2\ge4ab\Leftrightarrow\frac{ab}{a+b}\le\frac{a+b}{4}\)
Tương tự : \(\frac{bc}{b+c}\le\frac{b+c}{4}\) ; \(\frac{ac}{a+c}\le\frac{a+c}{4}\)
Cộng theo vế : \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{a+c}\le\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Chứng minh BĐT
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
thì đó bài bạn đó, BĐT ở bài bạn chính là Mincopxki, bn click vào link đó có cách chứng minh đó :V
Chứng minh BĐT dựa vào BĐT Côsi:
1) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (a, b, c ≥ 0)
2) \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8\) (a, b, c > 0)
c) \(\left(a+2\right)\left(b+8\right)\left(a+b\right)\ge32ab\) (a, b ≥ 0)
1 ) \(â+b\ge2\sqrt{ab}\)
Tương tự : \(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
Nhân vế theo vế của 3 bpt dc dpcm
Dấu = xảy ra khi a = b = c
2) Nhân 2 vế bpt vs abc
Cm như 1)
3) \(a+2\ge2\sqrt{2a}\)
\(b+8\ge2\sqrt{8b}\)
\(a+b\ge2\sqrt{ab}\)
Nhân vế theo vế của 3 bpt dc dpcm
Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=8\\a=b\end{matrix}\right.\) (vô lí)
nên k xảy ra đẳng thức
#Chuyên mục: Giải trí cùng BĐT
1/ Chứng minh BĐT sau với a, b, c không âm.
\(a^3+b^3+c^3+3abc\ge ab\sqrt{2\left(a^2+b^2\right)}+bc\sqrt{2\left(b^2+c^2\right)}+ca\sqrt{2\left(c^2+a^2\right)}\)
Tuần sau sẽ là hai bài và bài khó hơn tuần này nha mọi người! Do hôm nay bắt đầu tập trung vô lớp để ổn định chuẩn bị cho năm học mới nên mình khá bận.
Giả sử \(a\ge b\ge c>0\)
=>\(\hept{\begin{cases}2ab\sqrt{2\left(a^2+b^2\right)}\le a\left(a^2+b^2\right)+2ab^2\\2bc\sqrt{2\left(b^2+c^2\right)}\le c\left(b^2+c^2\right)+2cb^2\\2ca\sqrt{2\left(c^2+a^2\right)}\le\frac{ca\left(c^2+a^2\right)}{b}+2abc\end{cases}}\)
Cộng từng vế 3 bdt trên ta được
\(VP\le a^3+c^3+3b^2\left(a+c\right)+\frac{ca\left(c^2+a^2\right)}{b}+2abc\)
Ta quy bài toán về chứng minh
\(a^3+b^3+c^3+3abc\ge a^3+c^3+3b^2\left(a+c\right)+\frac{ca\left(a^2+c^2\right)}{b}+2abc\)
Hay \(a^3+2b^3+c^3+4abc\ge3b^2\left(a+c\right)+\frac{ca\left(c^2+a^2\right)}{b}\)
Biến đổi tương đương bđt tên ta được
\(\left(a-b\right)\left(b-c\right)\left(\frac{a^2+c^2}{b}-2b+a+c\right)\ge0\)
Bđt trên đúng vì \(\hept{\begin{cases}\left(a-b\right)\left(b-c\right)\ge0\\\frac{a^2+c^2}{b}-2b+c+a\ge\frac{a^2}{b}+a-2b\ge0\\a\ge b\ge c>0\end{cases}}\)
Vậy bài toán được chứng minh
P/s : cách khác là dùng AM-GM để chứng minh nhưng dài ngại làm lắm :)
Nêu các cách chứng minh BĐT Nesbitt.
BĐT Nesbitt là một BĐT khá quen thuộc trong các bài toán BĐT,chúng ta hay tìm những lời giải cho BĐT này nhé!
Đề: Cho a,b,c>0.CMR \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Cách 1:
Thật vậy,ta có: \(VT=\frac{a^2}{a\left(b+c\right)}+\frac{b^2}{b\left(c+a\right)}+\frac{c^2}{c\left(a+b\right)}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{\left(a+b+c\right)^2}{3}}=\frac{1}{\frac{2}{3}}.1=\frac{3}{2}^{\left(đpcm\right)}\)
Cách 2:
Ta có: BĐT \(\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)
\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)
\(\Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge9\)
Áp dụng BĐT AM-GM cho biểu thức trong ngoặc ta có đpcm.
Mọi người hãy cùng tìm thêm các lời giải khác nhé!
ok , cảm ơn bạn !!!
Bài toán rất hay và bổ ích !!!
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
e cũng có 1 vài cách chứng minh khá là cổ điển ạ !
Sử dụng BĐT AM-GM ta có :
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=2.\frac{a}{2}=a\)
Bằng cách chứng minh tương tự :
\(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b;\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng theo vế các bđt cùng chiều ta được :
\(\frac{a^2}{c+b}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{2\left(a+b+c\right)}{4}\ge a+b+c\)
\(< =>\frac{a^2}{b+c}+\frac{a}{2}+\frac{b^2}{a+c}+\frac{b}{2}+\frac{c^2}{a+b}+\frac{c}{2}\ge a+b+c\)
\(< =>\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c\ge\frac{3}{2}\left(a+b+c\right)\)
\(< =>\frac{a\left(a+b+c\right)}{b+c}+\frac{b\left(a+b+c\right)}{a+c}+\frac{c\left(a+b+c\right)}{b+a}\ge\frac{3}{2}\left(a+b+c\right)\)
\(< =>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\left(Q.E.D\right)\)
Chứng minh BĐT với a,b,c>0: \(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{3}{2}\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\)
1. chứng minh bđt
a. \(a^2+b^2+c^2\ge ab+ac+bc\)
b.\(a^3+b^3\ge ab\left(a+b\right)\forall a,b>0\)
c.\(a^2+b^2+c^2\ge a\left(b+c\right)\)
a,Ta có:\(a^2+b^2\ge2ab\)
\(a^2+c^2\ge2ac\)
\(b^2+c^2\ge2bc\)
Cộng theo từng về 3 bđt trên ta đc:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Xảy ra dấu đt khi \(a=b=c\)
b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho \(a+b>0\))
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Xảy ra dấu đẳng thức khi \(a=b\)
c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\forall a,b,c\)
Xảy ra đẳng thức khi \(a=b=c=0\)
Phần b mình tặng thêm một cách giải không dùng biến đổi tương đương:
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
Dấu bằng tại a=b