cho hình thang ABCD (AB//CD), AB<CD, AD=BC=AB. \(\widehat{BDC=30}\)độ. Tính các góc của hình thang
Cho hình thang cân ABCD (AB//CD, AB < CD). Biết AB = 10 cm, CD = 20 cm, AD = 13 cm. Tính diện tích hình thang ABCD
Gợi ý: Kẻ AH ^ CD tại H, kẻ BK ^ CD tại K
Tính được SABCD = 180cm2
Cho hình thang cân ABCD (AB//CD, AB < CD)ABCD(AB//CD,AB<CD). Kẻ hai đường cao AK, BMAK,BM của hình thang. Ta có thể kết luận:
+) DKDK >=< MCMC
+) DKDK = DC + AB(DC - AB) : 2DC - AB(DC + AB) : 2
Cho hình thang cân ABCD có AB//CD, AB = 2cm, CD = 6cm, AD = BC = 3cm. Tính
diện tích hình thang ABCD
từ A hạ \(AE\perp DC\)
từ B hạ \(BF\perp DC\)
\(AB//CD=>AB//EF\)\(=>ABCD\) là hình chữ nhật
\(=>AB=EF=2cm\)
vì ABCD là hình thang cân\(=>\left\{{}\begin{matrix}AD=BC\\\angle\left(ADE\right)=\angle\left(BCF\right)\end{matrix}\right.\)
mà \(\angle\left(AED\right)=\angle\left(BFC\right)=90^o\)
\(=>\Delta ADE=\Delta BFC\left(ch.cgn\right)=>DE=FC=\dfrac{DC-EF}{2}=\dfrac{6-2}{2}=2cm\)
xét \(\Delta ADE\) vuông tại E có: \(AE=\sqrt{AD^2-ED^2}=\sqrt{3^2-2^2}=\sqrt{5}cm\)
\(=>S\left(ABCD\right)=\dfrac{\left(AB+CD\right)AE}{2}=\dfrac{\left(2+6\right)\sqrt{5}}{2}=4\sqrt{5}cm^2\)
Cho hình thang cân ABCD là hình thang cân (AB//CD;AB<CD), biết AB=8cm, CD=2AB, AH\(⊥\)CD và AH=3cm. Khi đó chu vi hình thang cân ABCD là ....cm
cho hình thang abcd (ab//cd) có ah và bk là 2 đg cao của hình thang
a) cm DH=(cd-ab):2
b) bik AB= 6cm, CD=5cm, tính dh,ah và diện tích hình thang cân abcd
cho hình thang abcd có ab song song cd m thuộc hình thang vẽ các hình bình hành abcd e f chứng minh rằng ef song song cd ab = ab + cd
Cho hình thang ABCD ( AB//CD ) có AB= 9cm; CD= 30cm; AD=13cm; BC=20cm. Tính S hình thang ABCD ?
cho hình thang ABCD (AB//CD) biết AB= 6cm , CD=10cm . độ dài đường trung bình của hình thang ABCD đó là ?
\(=\dfrac{\left(6+10\right)}{2}=8\)
\(=\dfrac{6+10}{2}=8\left(cm\right)\)
1. Cho hình thang ABCD ( AB//CD ) có AB= 9cm; CD= 30cm; AD=13cm; BC=20cm. Tính S hình thang ABCD ?
Cho hình thang cân ABCD ( AB // CD ) có AB=13cm,CD=25cm,góc D=45 độ.Tìm diện tích hình thang ABCD ?