Tìm \(x\in Z,biết:\)
`x(5-x)`\(\ge0\)
Tìm x \(\in\)Z ĐỂ CÁC BIỂU THỨC SAU \(\in\)Z :
a) \(P=\frac{3}{\sqrt{x+1}}\left(x\ge0\right)\)
b) \(P=\frac{\sqrt{x-1}}{\sqrt{x+5}}\left(x\ge0\right)\)
c) \(P=\frac{2\sqrt{x}}{\sqrt{x+1}}\left(x\ge0\right)\)
HELP ME .................
Cho \(A=\dfrac{2\sqrt{x}+4}{\sqrt{x}-3}\); \(B=\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\) \(\left(x\ge0;x\ne9\right)\). Biết \(C=\dfrac{B}{A}\). Tìm \(x\in Z\) để \(C< \dfrac{-1}{3}\).
\(C=\left(\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right)\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}+4}\)
\(=\dfrac{-3}{2\sqrt{x}+4}\)
Để \(C< -\dfrac{1}{3}\) thì \(\dfrac{-3}{2\sqrt{x}+4}+\dfrac{1}{3}< 0\)
\(\Leftrightarrow-9+2\sqrt{x}+4< 0\)
\(\Leftrightarrow\sqrt{x}< \dfrac{5}{2}\)
hay \(0\le x< \dfrac{25}{4}\)
Cho \(A=\dfrac{2\sqrt{x}+4}{\sqrt{x}-3}\) và \(B=\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\) (\(x\ge0;x\ne9\))
a, Rút gọn B.
b, Biết \(C=\dfrac{B}{A}\). Tìm \(x\in Z\) để \(C< -\dfrac{1}{3}\).
a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\)
\(=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3}{\sqrt{x}-3}\)
Tìm x, y \(\in\)Z , biết :
a, \(|x+2|+|x+6|\ge0\)
b , \(|x-1|+|y-2|=1\)
Tìm \(x\in Z\)để \(A\in Z\)biết \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\); (\(x\ge0\)
Q = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)với đk x \(\ge0,x\ne9,x\ne4\)
1. rút gọn Q
2. tìm x để Q < 1
3. tìm x \(\in\)Z để Q\(\in\)Z
P=\(x-2\sqrt{x}\) với \(x\ge0;x\ne1\)
a, Tìm \(x\in Z\) để \(P\in Z\)
b, Tìm MinP
Tìm \(x\in Z\) để \(A\in Z\) với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)
Đặt: \(\sqrt{x}=t\)( \(t\ge0;t\ne1\)) => \(A\ne0\)
Ta có: \(A=\frac{t-1}{t^2+t+1}\)
<=> \(At^2+At+A=t-1\)
<=> \(At^2+\left(A-1\right)t+\left(A+1\right)=0\) (1)
(1) có nghiệm <=> \(\Delta\ge0\)<=> \(-3A^2-6A+1\ge0\)<=> \(-1-\frac{2}{\sqrt{3}}\le A\le-1+\frac{2}{\sqrt{3}}\)
Theo đề ra A thuộc Z ; A khác 0
=> A \(\in\){ - 2; -1 }
+) Với A = - 2 thế vào (1) ta có: \(-2t^2-3t-1=0\) <=> \(\orbr{\begin{cases}t=-1\left(loai\right)\\t=-\frac{1}{2}\left(loai\right)\end{cases}}\)
+) Với A = -1 thế vào (1) ta có: \(-t^2-2t=0\)<=> \(\orbr{\begin{cases}t=0\left(tm\right)\\t=-2\left(loai\right)\end{cases}}\)
Với t = 0 ta có: \(\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
Vậy x = 0 ; A = -1
\(\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x-3}}\right)\)
\(\left(x\ge0\right)x\ne9\)\(x\ne25\)
a) rút gọn P
b) Tìm x \(\in\)Z
p\(\in\)Z
a. P=\(\frac{x-5\sqrt{x}-x+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}:\frac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\cdot\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}:\frac{-x+9}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{-5}{\sqrt{x}+5}.\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{5}{\sqrt{x}+3}\)
b. P=\(\frac{5}{\sqrt{x}+3}\)
P nguyên \(\Leftrightarrow\sqrt{x}+3\inƯ\left(5\right)\Rightarrow\sqrt{x}+3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2\right\}\)\(\Rightarrow x=4\)
Vậy x=4 thì P nguyên