Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huynh thi tuyetnghi
Xem chi tiết
Phạm Thị Thùy Linh
2 tháng 12 2019 lúc 19:25

\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)

Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)

Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)

\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)

Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)

Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)

\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)

\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)

\(\Rightarrow4x+3y-4x-2y=-2\)

\(\Rightarrow y=-2\)

Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)

Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)

Làm tương tự nha cậu 

Khách vãng lai đã xóa
Nguyễn Anh Quân
18 tháng 5 2020 lúc 20:32

JKILO

Khách vãng lai đã xóa
Phan Nghĩa
18 tháng 5 2020 lúc 20:37

làm cả hai phương pháp cho nó máu :D

a, C1 : \(\hept{\begin{cases}3x+y=3\left(1\right)\\2x-y=7\left(2\right)\end{cases}}\)

Lấy pt 1 cộng pt 2 có : \(3x+y+2x-y=3+7\)

\(< =>5x=10< =>x=2\)

Thay vào pt 2 có : \(2x-y=7\)

\(< =>4-y=7< =>y=-3\)

Vậy ...

C2: \(\hept{\begin{cases}3x+y=3\left(1\right)\\2x-y=7\left(2\right)\end{cases}}\)

\(< =>\hept{\begin{cases}y=3-3x\\2x-\left(3-3x\right)=7\end{cases}}\)

\(< =>2x-3+3x=7\)

\(< =>5x=10< =>x=2\)

Thay vào pt 2 có : \(2x-y=7\)

\(< =>4-y=7< =>y=-3\)

Vậy ... 

Khách vãng lai đã xóa
Songoku
Xem chi tiết
Xem chi tiết
Đạt Nguyễn
22 tháng 5 2019 lúc 19:07

ĐẶT \(\sqrt{2y-1}=a\left(a\ge0\right)\)VÀ \(\frac{1}{x+y}=b\left(b\ne0\right)\)

TA THU ĐC HỆ MỚI :\(\hept{\begin{cases}a+b=3\\5a-2b=2\end{cases}}\)GIẢI HỆ THEO RA ĐC a , b thÌ thay x , y trở lại GIẢI tiếp hệ  đó theo x , y

ngu toán
Xem chi tiết
ngu toán
10 tháng 1 2016 lúc 8:14

sao mình không thấy câu trả lời vậy

 

mira 2276
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 3 2021 lúc 17:37

Đề bài là \(\left\{{}\begin{matrix}2x+\dfrac{1}{y}=\dfrac{3}{x}\\2y+\dfrac{1}{x}=\dfrac{3}{y}\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}\dfrac{2x+1}{y}=\dfrac{3}{x}\\\dfrac{2y+1}{x}=\dfrac{3}{y}\end{matrix}\right.\) nhỉ?

Tốt nhất là bạn sử dụng tính năng gõ công thức trực quan, rất dễ sử dụng, nó nằm chỗ khoanh đỏ này trong khung soạn thảo:

undefined

Click vô đó, rồi chọn 

undefined

Hệ 2 ẩn nằm ở đầu tiên hàng 2

Phân thức thì chỉ cần gõ "/" hoặc chọn biểu tượng phân thức 

undefined

Trần Nam Phong
Xem chi tiết
Mai Anh Phạm
Xem chi tiết
Yeutoanhoc
14 tháng 5 2021 lúc 15:50

`x-y=2<=>x=y+2` thay vào trên
`=>m(y+2)+2y=m+1`
`<=>y(m+2)=m+1-2m`
`<=>y(m+2)=1-2m`
Để hpt có nghiệm duy nhất
`=>m+2 ne 0<=>m ne -2`
`=>y=(1-2m)/(m+2)`
`=>x=y+2=5/(m+2)`
`xy=x+y+2`
`<=>(5-10m)/(m+2)=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)=10/(m+2)`
`<=>5-10m=10`
`<=>10m=-5`
`<=>m=-1/2(tm)`
Vậy `m=-1/2` thì HPT có nghiệm duy nhât `xy=x+y+2`

Yeutoanhoc
14 tháng 5 2021 lúc 15:47

`a)m=2`

$\begin{cases}2x+2y=3\\x-y=2\end{cases}$
`<=>` $\begin{cases}2x+2y=3\\2x-2y=4\end{cases}$
`<=>` $\begin{cases}4y=-1\\x=y+2\end{cases}$
`<=>` $\begin{cases}y=-\dfrac14\\y=\dfrac74\end{cases}$
Vậy m=2 thì `(x,y)=(7/4,-1/4)`

Yeutoanhoc
14 tháng 5 2021 lúc 15:52

Sửa đoạn `xy=x+y+2`

``<=>(5-10m)/(m+2)^2=(6-2m)/(m+2)+2`
`<=>(5-10m)/(m+2)^2=10/(m+2)`

`<=>5-10m=10(m+2)`

`<=>1-2m=2m+4`

`<=>4m=-3`

`<=>m=-3/4(tm)`

Nguyễn Vân Hương
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 8:03

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

Khách vãng lai đã xóa