chứng tỏ hai số sau nguyên tố cùng nhau: 12n+5 và 18n+7
chứng tỏ hai số sau là số nguyên tố cùng nhau:12n-5 và 27n-11
Lời giải:
Gọi $d=ƯCLN(12n-5, 27n-11)$
$\Rightarrow 12n-5\vdots d; 27n-11\vdots d$
$\Rightarrow 9(12n-5)-4(27n-11)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy 2 số đã cho nguyên tố cùng nhau.
Tìm số tự nhiên n để 18n+5 và 12n+5 là hai số nguyên tố cùng nhau
cho n thuộc N . CMR các cặp số sau là nguyên tố cùng nhau :
30n+17 và 12n+72n+1 và 2n+318n+2 và 30n+324n+7 và 18n+52n+5 và 3n+7gọi (30n + 17, 12n + 7) = d
=> 30n + 17 chia hết cho d và 12n + 7 chia hết cho d
=> (30n + 17) - (12n + 7) chia hết cho d
=> 30 - 12 chia hết cho d
=> mà d lẻ và < 1
=> d = 1
vậy 30n + 17 và 12n + 7 là hai số nguyên tố cùng nhau
làm được bao nhiêu thì làm
ai làm được nhiêu nhất sẽ dduocj
cho n thuộc N . CMR các cặp số sau là nguyên tố cùng nhau :30n+17 và 12n+72n+1 và 2n+318n+2 và 30n+324n+7 và 18n+52n+5 và 3n+7
Tìm số tự nhiên n để 18n+5 và 12n+5 là 2 số nguyên tố cùng nhau
Chứng tỏ 15n+4 và 12n+3 là hai số nguyên tố cùng nhau
Chứng tỏ các số sau là hai số nguyên tố cùng nhau:
a. 7n+ 10 và 5n+ 7
b.2n+ 3 và 4n + 8
c. 9n+ 24 và 3n + 4
d. 18n + 3 và 21n+ 7
a. Gọi d là ƯCLN ( 7n + 10 ; 5n + 7)
⇒ 7n + 10 chia hết cho d⇔5(7n + 10) chia hết cho d ⇔35n+50 chia hết cho d
và ⇒ 5n + 7 chia hết cho d ⇔ 7(5n + 7) chia hết cho d⇔35n+49 chia hết cho d
⇒35n+50-(35n+49) chia hết cho d⇔1 chia hết cho d⇒d=1
Vậy 7n + 10 và 5n + 7 là 2 số nguyên tố cùng nhau
b.
Giả sử d là ƯCLN ( 2n + 3 ;4n+8) và d là SNT
⇒ 4n + 8 chia hết cho d
và ⇒2n+3 chia hết cho d ⇔ 2(2n+3) chia hết cho d⇔4n+6 chia hết cho d
⇒4n+8-(4n+6) chia hết cho d⇔2 chia hết cho d và 2n+3 là số lẻ⇒d=1
Vậy 2n + 3 và 4n + 8 là 2 số nguyên tố cùng nhau
c.Gọi d là ƯCLN ( 9n + 24 và 3n + 4)
⇒ 9n + 24 chia hết cho d
và ⇒3n + 4 chia hết cho d ⇔ 3(3n+4) chia hết cho d⇔9n+12 chia hết cho d
⇒9n + 24-(9n+12) chia hết cho d⇔12 chia hết cho d và 3n + 4 ko chia hết cho 3 ⇒d=2
Để 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau thì d≠≠ 2
⇒n ko chia hết cho 2
Vậy Nếu n ko chia hết cho 2 thì 9n + 24 và 3n + 4 là 2 số nguyên tố cùng nhau
d,
a. Gọi d là ƯCLN ( 18n + 3 ; 21n + 7)
⇒ 18n + 3 chia hết cho d⇔7( 18n + 3) chia hết cho d ⇔126n+21 chia hết cho d
và ⇒ 21n + 7 chia hết cho d ⇔ 6(21n + 7) chia hết cho d⇔126n+42 chia hết cho d
⇒126n+42-(126n+21) chia hết cho d⇔21 chia hết cho d⇒d∈{3;7}
Mà 18n+3 ko chia hết cho 7 và 21n+7 ko chia hết cho 3⇒d=1
Vậy 18n + 3 và 21n + 7 là 2 số nguyên tố cùng nhau
Ps: nhớ k
# Aeri #
giúp mik vs
Chứng tỏ rằng: 3n + 4 và 12n + 17 là hai số nguyên tố cùng nhau.
chứng minh 18n+33 và 21n+7 là hai số nguyên tố cùng nhau ?
Chứng tỏ rằng với mọi số tự nhiên n thì 2 số sau là 2 số nguyên tố cùng nhau :
12n + 1 và 30n + 4
Gọi ƯCLN(12n + 1;30n + 4) = d . Ta có :
12n + 1 ⋮ d => 5(12n + 1) = 60n + 5 ⋮ d
30n + 4 ⋮ d => 2(30n + 4) = 60n + 8 ⋮ d
=> (60n + 8) - (60n + 5) ⋮ d
=> 3 ⋮ d => d ∈ Ư(3) ∈ {1;3} ( Vì ƯCLN ko có số nguyên âm)
Mặt khác :12n + 1 không chia hết cho 3 (Vì 12n ⋮ 3 nhưng 1 ko chia hết cho 3)
=> d = 1 . Vậy 2 số sau là 2 số nguyên tố cùng nhau