Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 21:44

a: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)

=>x=45; y=60; z=75

b: 

 Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{8}{2}=4\)

=>x=12; y=16; z=20

Hà Quang Minh
16 tháng 9 2023 lúc 21:47

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

a) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{180}}{{12}} = 15\)

Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75

b) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{8}{2} = 4\)

Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20

Sơn Mai
Xem chi tiết
Bạch Trúc
11 tháng 9 2016 lúc 18:54

a) Tính chất của dãy tỉ số bằng nhau

b) Đặt 2x = 3y = 5z =k

=> x= k/2

y= k/3

x= k/5

Thay x=   ,  y=   ,  z=   vào x-y+z=11

Tự làm tiếp

Jun Kai Wang
Xem chi tiết
Nguyen Duy Dai
Xem chi tiết
HD Film
20 tháng 8 2020 lúc 13:15

+) Ta chứng minh: \(\frac{x-2}{x+1}\le\frac{x-2}{3}\)

\(\Leftrightarrow\frac{3\left(x-2\right)-\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)}\le0\)'

\(\Leftrightarrow\frac{-\left(x-2\right)^2}{3\left(x+1\right)}\le0\)(luôn đúng)

+) \(6=3\sqrt[3]{xyz}\le x+y+z\)

+) \(\text{Σ}\frac{x-2}{x+1}\le\frac{x-2+y-2+z-2}{3}\le\frac{0}{3}=0\)

Dấu = xảy ra khi x = y = z = 2

Khách vãng lai đã xóa
Miki Thảo
Xem chi tiết
nguyễn hoàng mai
Xem chi tiết
ST
3 tháng 10 2016 lúc 14:20

\(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{x}{8}=\frac{y}{11};\frac{y}{11}=\frac{z}{3}\Rightarrow\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)

\(\Rightarrow x=5.8=40\)

\(\Rightarrow y=5.11=55\)

Vậy x = 40 ; y = 55

Ngô Đức Anh
Xem chi tiết
Kiệt Nguyễn
25 tháng 10 2020 lúc 20:51

\(ĐK:x,y,z\ne0\)

Đặt \(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=a\)

\(\Rightarrow x-\frac{1}{y}=\frac{a}{6};y-\frac{1}{z}=\frac{a}{3};z-\frac{1}{x}=\frac{a}{2}\)\(\Rightarrow\frac{a^3}{36}=xyz-\frac{1}{xyz}-x+\frac{1}{y}-y+\frac{1}{z}-z+\frac{1}{x}=a-\frac{a}{6}-\frac{a}{3}-\frac{a}{2}=0\)suy ra a = 0

Nếu xyz = 1 thì x = y = z = 1 (thỏa mãn)

Nếu xyz = -1 thì x = y = z = -1 (thỏa mãn)

Vậy nghiệm của hệ phương trình (x; y; z) là: (1; 1; 1),(-1; -1; -1).

Khách vãng lai đã xóa
Đặng Phạm Thanh Tâm_1286
10 tháng 2 2020 lúc 22:16

Nhìn lozic qué bạn ey!!!

Khách vãng lai đã xóa
Erza Scarlet
Xem chi tiết
Trần Việt Linh
2 tháng 10 2016 lúc 22:23

a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)

=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)

b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)

\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)

\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)

\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)

c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)

=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)

Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)

Có \(xyz=-528\)

\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)

\(\Leftrightarrow528\cdot k^3=-528\)

\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)

Với k=-1 thì : x=-8;y=-6;x=-11

Nguyễn Đình Dũng
2 tháng 10 2016 lúc 22:24

a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)

=> \(\begin{cases}x=240\\y=112\end{cases}\)

b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)

\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)

=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)

=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)

c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)

=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)

Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k

=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)

=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528

=> k3 = -1 => k = -1

=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)

Erza Scarlet
3 tháng 10 2016 lúc 12:29

À ! sorry mấy bn nha đề bài là tìm x,y, z nhưng mik ghi nhầm đề bài hum

Nguyễn Trung Hiếu
Xem chi tiết
Thanh Thuy Tran
4 tháng 2 2017 lúc 8:42

Bài b nhé bạn!

\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)

Trừ lại từng phương trình trong hệ:

\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)

Chia lại từng phương trình trong hệ mới, được:

\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)

Xong rồi đó!!!