Tìm giá trị liên nhất của biểu thức Q=8/5+|5/6-3.x|
Tìm giá trị lớn nhất của biểu thức Q=8/(5+|5/6-3.x|)
\(\left|\dfrac{5}{6}-3x\right|>=0\forall x\)
=>\(\left|\dfrac{5}{6}-3x\right|+5>=5\forall x\)
=>\(Q=\dfrac{8}{\left|\dfrac{5}{6}-3x\right|+5}< =\dfrac{8}{5}\forall x\)
Dấu '=' xảy ra khi \(\dfrac{5}{6}-3x=0\)
=>\(3x=\dfrac{5}{6}\)
=>\(x=\dfrac{5}{18}\)
\(Q=\dfrac{8}{5+\left|\dfrac{5}{6}-3x\right|}\)
Ta thấy: \(\left|\dfrac{5}{6}-3x\right|\ge0\forall x\)
\(\Rightarrow5+\left|\dfrac{5}{6}-3x\right|\ge5\forall x\)
\(\Rightarrow\dfrac{1}{5+\left|\dfrac{5}{6}-3x\right|}\le\dfrac{1}{5}\forall x\)
\(\Rightarrow Q=\dfrac{8}{5+\left|\dfrac{5}{6}-3x\right|}\le\dfrac{8}{5}\forall x\)
Dấu \("="\) xảy ra khi: \(\dfrac{5}{6}-3x=0\Leftrightarrow3x=\dfrac{5}{6}\)
\(\Leftrightarrow x=\dfrac{5}{18}\)
Vậy \(Max_Q=\dfrac{8}{5}\) khi \(x=\dfrac{5}{18}\).
Đề như này phải không bạn?
Tìm giá trị tuyệt đối của biểu thức Q=8/5+|5/6-3.x|
\(\left|\dfrac{5}{6}-3x\right|>=0\forall x\)
=>\(\left|\dfrac{5}{6}-3x\right|+\dfrac{8}{5}>=\dfrac{8}{5}>0\forall x\)
\(\left|Q\right|=\left|\dfrac{8}{5}+|\dfrac{5}{6}-3x|\right|=\dfrac{8}{5}+\left|\dfrac{5}{6}-3x\right|\) vì \(\left|\dfrac{5}{6}-3x\right|+\dfrac{8}{5}>0\forall x\)
Mn ơi mik viết lộn giá trị lớn nhất nha chứ ko phải giá trị tuyệt đối
Đề là tìm GTNN chứ bạn!
Có: \(\left|\dfrac{5}{6}-3x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{8}{5}+\left|\dfrac{5}{6}-3x\right|\ge\dfrac{8}{5}\)
Dấu \("="\) xảy ra khi: \(\dfrac{5}{6}-3x=0\Leftrightarrow3x=\dfrac{5}{6}\)
\(\Leftrightarrow x=\dfrac{5}{18}\)
Vậy \(Min_Q=\dfrac{8}{5}\) khi \(x=\dfrac{5}{18}\).
Cho biểu thức\(B=2x+\frac{8}{x-3}-5\)
a>Tìm giá trị nhỏ nhất của biểu thức B.
b>Tìm giá trị của x để bểu thức B có giá trị nhỏ nhất.
Đề không cho gì hết nên ta xét 2 trường hợp.
Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.
Trường hợp 2: \(x\ge0\) thì ta thấy \(x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.
Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN
Đề không cho gì hết nên ta xét 2 trường hợp.
Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.
Trường hợp 2: \(x\ge0\) thì ta thấy \(3>x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.
Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN
Tìm giá trị lớn nhất của biểu thức
\(M=\frac{6}{20x^6-\left(8-40y\right)x^3+25y^2-5}\)
a, Tìm giá trị nhỏ nhất của biểu thức
A = | x+5|+|x+2|+|x+7|+|x-8|
b,Tìm giá trị nhỏ nhất của biểu thức
B= |x+3|+|x-2|+|x-5|
c,Tìm giá trị lớn nhất của biểu thức
C= |x+5|-|x-2|
giải cụ thể nha
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau
K = /x - 3/ + /x + 5/
M = 15 : (/x/ + /x+8)
Q = /x/ + /x-3/ + /x-7/
a) tìm x để biểu thức sau có giá trị lớn nhất và giá trị nhỏ nhất của
\(A=|x-\frac{2}{3}|-4\)
b) tìm giá trị lớn nhất của biểu thức
\(B=2-|x+\frac{5}{6}|\) ; \(C=-|x+\frac{2}{3}|-4\)
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
Bài 8 :
1 . Tìm giá trị lớn nhất của các biểu thức .
a. B = - ( x + 18/1273 ) - 183/124 .
b. C = 15/( x - 8)² + 4 .
2 . Tìm các giá trị của x để các biểu thức sau nhận giá trị dương .
a. A = x² + 6 .
b. B = ( 5 - x ) . ( x + 8 ) .
c. C = ( x - 1 ) . ( x - 2 ) / x - 3 .
Bài 2:
a) \(A=x^2+6\ge6>0\forall x\in R\)
b) \(B=\left(5-x\right)\left(x+8\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)
Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.
Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.
Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|
Câu 9.
a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
Câu 10. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
Câu 11. Tìm các giá trị của x sao cho:
a) |2x – 3| = |1 – x|
b) x2 – 4x ≤ 5
c) 2x(2x – 1) ≤ 2x – 1.
Câu 12. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 13. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
\(5,M=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\\ M=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\\ M=1\left(1-3ab\right)=1-3ab\ge1-\dfrac{3\left(a+b\right)^2}{4}=1-\dfrac{3}{4}=\dfrac{1}{4}\\ M_{min}=\dfrac{1}{4}\Leftrightarrow a=b=\dfrac{1}{2}\)