Tìm 4 giá trị của x sao cho
0, 18 < x < 0,19
1.Tìm giá trị của x sao cho hai biểu thức có giá trị bằng nhau: 0,35x+3/4x và 4+x/10+x-39
2.Tìm giá trị của x sao cho biểu thức sau có giá trị bằng 6: (1+x)^3+(1-x)^3-6x(x+1)
3. Giải các phương trình sau:
a,,(7x-2x)(2x-1)(x+3)=0
b,(4x-1)(x-3)-(x-3)(5x+2)=0
c, (x+4)(5x+9)-x^2+16=0
Bài 2:
(1 + x)3 + (1 - x)3 - 6x(x + 1) = 6
<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6
<=> -6x + 2 = 6
<=> -6x = 6 - 2
<=> -6x = 4
<=> x = -4/6 = -2/3
Bài 3:
a) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 10x3 + 25x2 - 15x = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -3
b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0
<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0
<=> -x2 + 9 = 0
<=> -x2 = -9
<=> x2 = 9
<=> x = +-3
c) (x + 4)(5x + 9) - x2 + 16 = 0
<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0
<=> 4x2 + 29x + 52 = 0
<=> 4x2 + 13x + 16x + 52 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> 4x + 13 = 0 hoặc x + 4 = 0
<=> x = -13/4 hoặc x = -4
Lê Nhật Hằng cảm ơn bạn nha
Tìm tất cả giá trị nguyên của x, sao cho: (x + 7) . (4 - x) > 0
Nếu giải cụ thể ra thì nó thế này :
Vì tích hai số nguyên > 0 nên chúng cùng dấu.
Xét TH1 : \(\hept{\begin{cases}x+7>0\\4-x>0\end{cases}}\) <=> \(\hept{\begin{cases}x>-7\\x< 4\end{cases}}\) <=> \(-7< x< 4\)
Xét TH2 : \(\hept{\begin{cases}x+7< 0\\4-x< 0\end{cases}}\) <=> \(\hept{\begin{cases}x< -7\\x>4\end{cases}}\) ( Vô lí )
Vậy -7<x<4.
Áp dụng tính chất ngoài-đồng trong-khác :D ta có :
\(-7< x< 4\)
Vậy...
Cho x, y > 0, x + y ≤ 5. Tìm giá trị nhỏ nhất của A = x + y + 8/x + 18/ y
ta có \(x+y\le5=>-\left(x+y\right)\ge-5\)
có \(A=x+y+\dfrac{8}{x}+\dfrac{18}{y}=-\left(x+y\right)+2x+2y+\dfrac{8}{x}+\dfrac{18}{y}\)
có \(-\left(x+y\right)+2x+2y+\dfrac{8}{x}+\dfrac{18}{y}\ge-5+8+12=15\)
=>A\(\ge15\) dấu= xảy ra <=>x=2,y=3
vậy min A=15
tìm các giá trị của x sao cho:
a/ (x+5).(x-3)>0
b/ (4-x).(2-x)<0
a) Tìm x sao cho giá trị biểu thức \(\dfrac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\dfrac{3x+3}{6}\)
b) Tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x-1)2.
c) Tìm x sao cho giá trị của biểu thức \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn giá trị của biểu thức \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)
=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)
=>18x-12>=12x+12
=>6x>=24
=>x>=4
b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)
=>\(x^2+2x+1< x^2-2x+1\)
=>4x<0
=>x<0
c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì
\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)
=>\(2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
=>x<=4
Tìm giá trị của số nguyên X sao cho 4 * ( x - 8 )bé hơn 0
b ) -3(x*2) bé hơn 0
a ) \(4.\left(x-8\right)< 0\)
\(\Leftrightarrow4x-32< 0\)
\(\Leftrightarrow4x< 32\)
\(\Leftrightarrow x< 8\)
b ) \(-3\left(x.2\right)< 0\)
\(\Leftrightarrow-6x< 0\)
\(\Leftrightarrow x>0\)
\(\text{a) }4\left(x-8\right)< 0\)
\(\Leftrightarrow x-8< 0\div4\)
\(\Leftrightarrow x-8< 0\)
\(\Leftrightarrow x< 0+8\)
\(\Leftrightarrow x< 8\)
\(\Rightarrow x\in\left\{...;0;1;2;3;4;5;6;7\right\}\)
\(\text{b) }-3\left(2x\right)< 0\)
\(\Leftrightarrow2x< \frac{0}{-3}\)
\(\Leftrightarrow2x< 0\)
\(\Leftrightarrow x< 0\div2\)
\(\Leftrightarrow x< 0\)
\(\Rightarrow\hept{\begin{cases}x\inℤ\\x\notinℕ^∗\end{cases}}\)
Tìm 5 giá trị của x thuộc Z sao cho:
a)4.(x-8) <0
b)-3.(x-2) <0
a ) Để 4.( x - 8 ) < 0 <=> 4 và x - 8 trái dấu
Mà 4 > 0 => x - 8 < 0 => x < 8
Vậy x < 8
b ) Để -3 ( x - 2 ) < 0 <=> - 3 và x - 2 trái dấu
Mà - 3 < 0 => x - 2 > 0 => x > 2
Vậy x > 2
với mỗi hàm số y=-x^2+2x+3 và y= 1/2x^2+x+4 , hãy :a) tìm tập hợp các giá trị x sao cho y>0 b)tim tập hợp các giá trị x sao cho y<0
a: \(y=-x^2+2x+3\)
y>0
=>\(-x^2+2x+3>0\)
=>\(x^2-2x-3< 0\)
=>(x-3)(x+1)<0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 3\\x>-1\end{matrix}\right.\)
=>-1<x<3
\(y=\dfrac{1}{2}x^2+x+4\)
y>0
=>\(\dfrac{1}{2}x^2+x+4>0\)
\(\Leftrightarrow x^2+2x+8>0\)
=>\(x^2+2x+1+7>0\)
=>\(\left(x+1\right)^2+7>0\)(luôn đúng)
b: \(y=-x^2+2x+3< 0\)
=>\(x^2-2x-3>0\)
=>(x-3)(x+1)>0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x>-1\end{matrix}\right.\)
=>x>3
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 3\\x< -1\end{matrix}\right.\)
=>x<-1
\(y=\dfrac{1}{2}x^2+x+4\)
\(y< 0\)
=>\(\dfrac{1}{2}x^2+x+4< 0\)
=>\(x^2+2x+8< 0\)
=>(x+1)2+7<0(vô lý)
tìm 5 giá trị của x thuộc Z sao cho
a. 4(x-8)<0
b.-3(x-2)<0
a) \(4.\left(x-8\right)< 0\)
Vì 4 > 0 nên để thỏa mãn 4.(x-8) < 0
Thì \(x-8< 0\Rightarrow x< 8\)
Ta chọn bất kì x = {7;6;5;4;3} (hoặc bạn có thể chọn các số khác chỉ cần nhỏ hơn 8)
b) \(-3.\left(x-2\right)< 0\)
Vì -3 < 0 nên để thỏa mãn -3.(x-2) < 0
thì x - 2 phải lớn hơn 0
<=> x > 2
Ta có thể chọn bất kì: x = {3;4;7;10;9}