Xác định tọa độ giao điểm của 2 đường thẳng:y=-x+3 và y=x+3
xác định tọa độ các giao điểm của parabol (P):y=x2 và đường thẳng d:y= √3 x - √3 +1
Phương trình hoành độ giao điểm là:
\(x^2-x\sqrt{3}+\sqrt{3}-1=0\)
\(\text{Δ}=\left(\sqrt{3}\right)^2-4\cdot1\cdot\left(\sqrt{3}-1\right)=3-4\sqrt{3}+4=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{\sqrt{3}-2+\sqrt{3}}{2}=\sqrt{3}-1\\x_2=\dfrac{\sqrt{3}+2-\sqrt{3}}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_1=4-2\sqrt{3}\\y_2=1\end{matrix}\right.\)
Bài 1:Xác định m để ba đường thẳng sau:
1: y= -2x, d2: y = -x +1, d3 : y = -(m +3)x - 2m +1 đồng quy.
Bài 2: Trên cùng một mặt phẳng tọa độ cho hàm số d1 : y = -2x và d2 : y = x+3. a) Tìm tọa độ giao điểm của hai đường thẳng d1 và d2 bằng hai cách.
b) Viết phương trình đường thẳng d3 biết đường thẳng này song song với d1 và cắt d2 tại điểm có hoành độ bằng 1.
Bài 3 :Xác định các hệ số a, b biết đường thẳng d: y ax +b song song với đường thẳng d1 : y = 3.x và cắt trục hoành tại điểm có hoành độ bằng 2/3
Bài 3:
Vì (d)//(d1) nên a=3
Vậy: (d): y=3x+b
Thay \(x=\dfrac{2}{3}\) và y=0 vào (d), ta được:
\(b+2=0\)
hay b=-2
Trên mặt phẳng tọa độ Ory, cho parabol (P):y=r? và đường thẳng (d): y = (m + 2)x - (m+2)x-2m. a) Xác định tọa độ giao điểm (d) và (P) khi m = -3. b) Tìm tất cả giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ lần lượt là
Câu 2. Trong mặt phẳng tọa độ Oxy, cho ba đường thẳng (d1):y=x+2 (d2):y=-x+4 và (d_{3}):y=mx+m. (m là tham số thục). a) Vẽ (d1) và (d2) trên cùng một mặt phẳng tọa độ Oxy. b) Xác định các giá trị của tham số m để đường thẳng (d3) đi qua giao điểm của (d1)và(d2)
a:
b: Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}x+2=-x+4\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2=3\end{matrix}\right.\)
Thay x=1 và y=3 vào (d3), ta được:
\(1\cdot m+m=3\)
=>2m=3
=>\(m=\dfrac{3}{2}\)
Trong mặt phẳng tọa độ Ãy cho parapol (P): y=\(x^2\) và đường thẳng (d): y=mx+1-m.
a) Xác định tọa độ giao điểm của (P) và (d) khi m=-1
b) Tìm m để (P) và (d) cắt nhau tại 2 điểm phân biệt có hoàng độ \(x_1\);\(x_2\) thỏa mãn \(\sqrt{x_1}+\sqrt{x_2}=3\)
a: Khi m=-1 thì (d): y=-x+1-(-1)=-x+2
PTHĐGĐ là:
x^2+x-2=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
=>y=4 hoặc y=1
b: PTHĐGĐ là:
x^2-mx+m-1=0
Δ=(-m)^2-4(m-1)
=m^2-4m+4=(m-2)^2>=0
Để (P) cắt (d) tại hai điểm pb thì m-2<>0
=>m<>2
\(\sqrt{x_1}+\sqrt{x_2}=3\)
=>x1+x2+2 căn x1x2=9
=>\(m+2\sqrt{m-1}=9\)
=>\(m-1+2\sqrt{m-1}=8\)
=>\(\left(\sqrt{m-1}+4\right)\left(\sqrt{m-1}-2\right)=0\)
=>m=5
Cho parabol (P) : y = x² và đường thẳng d: y = -x + 2
a) vẽ parabol và đường thẳng d trên cùng một hệ trục tọa độ.
b) xác định tọa độ giao điểm của P và d bằng phép tính
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2+x-2=0\\y=-x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(x-1\right)=0\\y=-x+2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(-2;4\right);\left(1;1\right)\right\}\)
Cho Parabol (P):y=x^2 và đường thẳng (d): y=mx+1-m
A )Xác định tọa độ giao điểm của (d) và (P) khi m=-1
B)Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1;x2 thỏa mãn 2 =3
a) Xét phương trình hoành độ giao điểm
\(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)
Vậy tọa độ giao điểm là \(\left(1;1\right)\) và \(\left(-2;4\right)\)
(Làm hộ mình câu b nha)
Cho các hàm số: \(y=x^2\) và y=-x+2.
a)Xác định tọa độ các giao điểm A, B của đồ thị hai hàm số đã cho và tọa độ trung điểm I của AB
b) Xác định tọa độ của điểm M thuộc DTHS: \(y=x^2\) sao cho tam giác ABM cân tại M
b: A(1;1) B(-2;4)
\(M\left(x;x^2\right)\)
Theo đề, ta có: MA=MB
\(\Leftrightarrow\sqrt{\left(x-1\right)^2+\left(x^2-1\right)^2}=\sqrt{\left(x+2\right)^2+\left(x^2-4\right)^2}\)
\(\Leftrightarrow x^2-2x+1+x^4-2x^2+1=x^2+4x+4+x^4-8x^2+16\)
\(\Leftrightarrow6x^2-6x-18=0\)
\(\Leftrightarrow x^2-x-3=0\)
\(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-3\right)=13>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{13}}{2}\\x_2=\dfrac{1+\sqrt{13}}{2}\end{matrix}\right.\)
Vậy: \(M\left(\dfrac{1-\sqrt{13}}{2};\dfrac{7-\sqrt{13}}{2}\right);M\left(\dfrac{1+\sqrt{13}}{2};\dfrac{7+\sqrt{13}}{2}\right)\)
Cho 2 đường thẳng(d1):y=2-x và (d2):\(y=\dfrac{-x}{3}-\dfrac{1}{2}\)
a)Vẽ trên cùng mặt phẳng Oxy,2 đường thẳng(d1) và (d2)
b)Xác định tọa độ giao điểm của 2 đường thẳng trên bằng đồ thị và bằng phép tính
c)Viết phương trình của đường thẳng (d) đi qua điểm \(N\in\left(d_2\right)\) có hoành độ bằng \(\dfrac{3}{4}\) và song song với \(\left(d_1\right)\)
b) Ta có: (d2): \(y=\dfrac{-x}{3}-\dfrac{1}{2}\)
\(\Leftrightarrow y=\dfrac{-1}{3}x-\dfrac{1}{2}\)
Gọi A(xA;yA) là giao điểm của (d1) và (d2)
Hoành độ của A là:
\(\dfrac{-1}{3}x-\dfrac{1}{2}=2-x\)
\(\Leftrightarrow\dfrac{-1}{3}x-\dfrac{1}{2}-2+x=0\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{2}{3}x=\dfrac{5}{2}\)
\(\Leftrightarrow x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)
Thay \(x=\dfrac{15}{4}\) vào hàm số y=2-x, ta được:
\(y=2-\dfrac{15}{4}=\dfrac{8}{4}-\dfrac{15}{4}=-\dfrac{7}{4}\)
Vậy: \(A\left(\dfrac{15}{4};-\dfrac{7}{4}\right)\)