tìm đa thức B biết :
B:4x=2xy2+3xy-5x
Phân tích các đa thức sau thành nhân tử:
a/ x( 3- x) – x + 3 b/ 3x2 – 5x – 3xy + 5y c/ x2 – xy – 10x + 10y
d/ 2xy+ x2 + y2 - 16 e/ x2 – y2 – 4x – 4y f/ 9 – 4x2 + 4xy – y2
g/ y3 – 2xy2 + x2y h/ x3 – 3x2 – 4x + 12 i/ x( x- y) + x2 – y2
a: \(=\left(3-x\right)\left(x+1\right)\)
b: \(=3x\left(x-y\right)-5\left(x-y\right)\)
=(x-y)(3x-5)
c: \(=x\left(x-y\right)-10\left(x-y\right)\)
\(=\left(x-y\right)\left(x-10\right)\)
a) \(=x\left(3-x\right)+\left(3-x\right)=\left(3-x\right)\left(x+3\right)\)
b) \(=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(=x\left(x-y\right)-10\left(x-y\right)=\left(x-y\right)\left(x-10\right)\)
d) \(=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)
e) \(=\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)
f) \(=9-\left(4x^2-4xy+y^2\right)=9-\left(2x-y\right)^2=\left(3-2x+y\right)\left(3+2x-y\right)\)
g) \(=y\left(y^2-2xy+x^2-y\right)\)
h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
i) \(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(2x+y\right)\)
tìm đa thức A , đa thức B biết :
A+(2x^2.-y^5)=5x^2-3x^2+2xy
B-(3xy+x^2-2y^2)=4x^2-xy+y^2
A+(2x^2-y^5)=5x^2-3x^2+2xy
=>A+2x^2-y^5=2x^2+2xy
=>A=2xy+y^5
B-(3xy+x^2-2y^2)=4x^2-xy+y^2
=>B=4x^2-xy+y^2+3xy+x^2-2y^2
=>B=5x^2+2xy-y^2
Phân tích đa thức thành nhân tử:
a) 3 x 2 - 3 x y – 5 x + 5 y
b) x 2 + 4 x – 45
Bạn nên viết đề cho rõ ràng để mọi người hiểu đề và hỗ trợ bạn tốt hơn. Viết đề díu dít vào nhau và không gõ công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) khiến bài của bạn có khả năng bị bỏ qua cao hơn nhé.
Bài 2: Thực hiện phép tính: a) 2xy2 . (-5x 2 y 3 ) ; b) (-2x2 yz) + (-5 x 2 yz).
Bài 3: Cho đa thức:
P(x) = 2x5 + 2 – 6x 2 – 3x3 + 4x2 – 2x + x 3 + 4x 5 .
a) Thu gọn đa thức P(x).
b) Sắp xếp P(x) theo lũy thừa giảm của biến.
c) Tìm bậc của P(x).
Bài 4: Tìm nghiệm của đa thức
Q(x) = 3x – 5
Bài 2 :
a, \(P\left(x\right)=2x^5+2-6x^2-3x^3+4x^2-2x+x^3+4x^5=6x^5-2x^3-2x^2+2\)
b, sắp xếp rồi, trên ý
c, Bậc : 5
Bài 3 : \(Q\left(x\right)=3x-5=0\Leftrightarrow x=\frac{5}{3}\)
Bài 1 :
a, \(2xy^2\left(-5x^2y^3\right)=-10x^3y^5\)
b, \(\left(-2x^2yz\right)+\left(-5x^2yz\right)=-7x^2yz\)
Phân tích đa thức thành nhân tử:
a) x2 (xy + 1) + 2y - x - 3xy
b) (5x - 2y)(5x + 2y) + 4y - 1
Tìm x biết:
a) ( x2 + 2x)2 - 2x2 - 4x = 3
b) ( x + 1/2)2 - (x + 1/2)( x + 6) = 8
Câu 1. Trong các biểu thức sau, biểu thức nào là đơn thức?
A. x2 - 3xy B. 6xyz C. y2 + 2y D. x2 - 5
Câu 2. Trong các biểu thức sau, biểu thức nào không phải là đa thức?
A. 4xy + 3 B. 11 - 2xy2 C. x2 + xy + 1 D. \(\dfrac{7}{2y}+3x\)
cho biểu thức P=5x(3x2y-2xy2+1) -3xy (5x2-3xy)=x2y2
a) bằng cách thu gọn,chứng tỏ rằng giá trị của biểu thức P chỉ phụ thuộc vào biến x mà không phụ thuộc vào biến y
b) tìm giá trị của x sao cho P=10
P=5x(3x2y-2xy2+1) -3xy (5x2-3xy)=( chỗ này dấu bằng ạ hay là cộng trừ )x2y2
Thu gọn các đa thức sau
a: A = -2xy + 3\2xy2 + 1\2 xy2 + xy
b: B = xy2z + 2xy2z -xyz -3xy2z + xy2z
c: C = 4x2y3 + x4 -2x2 + 6x4 -x2y3
d: D = 3\4xy2 - 2xy - 1\2xy2 + 3xy
e: E = 2x2 - 3y3 - z4 - 4x2 + 2y3 + 3z4
f: F = 3xy2z +xy2z - xyz + 2xy2z - 3xyz
a: A = -2xy + 3/2xy^2 + 1/2xy^2 + xy = -2xy + 2xy^2 + xy = 2xy^2 - xy
b: B = xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z = 3xy^2z - xyz
c: C = 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3 = 7x^4 + 3x^2y^3 - 2x^2
d: D = 3/4xy^2 - 2xy - 1/2xy^2 + 3xy = 5/4xy^2 + xy
e: E = 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4 = -2x^2 - y^3 + 2z^4
f: F = 3xy^2z + xy^2z - xyz + 2xy^2z - 3xyz = 6xy^2z - 2xyz
a: A=-2xy+3/2xy^2+1/2xy^2+xy
=-2xy+xy+3/2xy^2+1/2xy^2
=2xy^2-xy
b: \(B=xy^2z+2xy^2z-xyz-3xy^2z+xy^2z\)
\(=xy^2z\left(1+2-3+1\right)-xyz=xy^2z-xyz\)
c: \(=4x^2y^3-x^2y^3+x^4+6x^4-2x^2\)
\(=7x^4-x^2+3x^2y^3\)
d: \(=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+3xy-2xy\)
=1/4xy^2+xy
e: \(=2x^2-4x^2-3y^3+2y^3+3z^4-z^4\)
\(=-2x^2-y^3+2z^4\)
f: \(=xy^2z+3xy^2z+2xy^2z-xyz-3xyz\)
\(=6xy^2z-4xyz\)