\(\sqrt{x^2-3x+25}=3\)
giải phương trình:
1,\(\sqrt{3x-8}\)-\(\sqrt{x+1}\)=\(\dfrac{2x-11}{5}\)
2,3x2-3x+18=10\(\sqrt{x^3+8}\)
3,\(\sqrt{5+2x}\)+\(\sqrt{5-2x}\)+5=3\(\sqrt{25-4x^2}\)
a)\(\sqrt{X^2-3X+2}=3-X\)
b)\(\sqrt{4x^2-20x+25}+2x=5\)
c)\(\sqrt{\left(3-2x\right)^2}=4\)
a
ĐK:
\(3-x\ge0\\ \Leftrightarrow x\le3\)
\(\sqrt{x^2-3x+2}=3-x\\ \Leftrightarrow x^2-3x+2=\left(3-x\right)^2=9-6x+x^2\\ \Leftrightarrow x^2-3x+2-9+6x-x^2=0\\ \Leftrightarrow3x=7\\ \Leftrightarrow x=\dfrac{7}{3}\left(nhận\right)\)
Thử lại: \(\sqrt{\left(\dfrac{7}{3}\right)^2-3.\dfrac{7}{3}+2}=\dfrac{2}{3}>0\)
Vậy phương trình có nghiệm duy nhất \(x=\dfrac{7}{3}\)
b
\(\sqrt{4x^2-20x+25}=\sqrt{\left(2x\right)^2-2.2x.5+5^2}=\sqrt{\left(2x-5\right)^2}=\left|2x-5\right|\)
Phương trình trở thành:
\(\left|2x-5\right|+2x=5\) (1)
Với \(x< \dfrac{5}{2}\) thì (1) \(\Leftrightarrow5-2x+2x=5\Leftrightarrow5=5\)
=> Với \(x< \dfrac{5}{2}\) thì phương trình có nghiệm với mọi x \(< \dfrac{5}{2}\) (I)
Với \(x\ge\dfrac{5}{2}\) thì (1)
\(\Leftrightarrow2x-5+2x=5\\ \Leftrightarrow2x-5+2x-5=0\\ \Leftrightarrow4x=10\\ \Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\left(nhận\right)\left(II\right)\)
Từ (I), (II) kết luận phương trình có nghiệm với mọi \(x\le\dfrac{5}{2}\)
c
\(\Leftrightarrow\left|3-2x\right|=4\) (1)
Nếu \(x\le\dfrac{3}{2}\) thì (1)
\(\Leftrightarrow3-2x=4\\ \Leftrightarrow2x=-1\\ \Leftrightarrow x=-\dfrac{1}{2}\left(nhận\right)\)
Nếu \(x>\dfrac{3}{2}\) thì (1)
\(\Leftrightarrow2x-3=4\\ \Leftrightarrow2x=7\\ \Leftrightarrow x=\dfrac{7}{2}\left(nhận\right)\)
Vậy phương trình có 2 nghiệm \(S=\left\{-\dfrac{1}{2};\dfrac{7}{2}\right\}\)
a: =>x^2-3x+2=x^2-6x+9 và x<=3
=>3x=7 và x<=3
=>x=7/3(loại)
b: =>|2x-5|=5-2x
=>2x-5<=0
=>x<=5/2
c: =>|2x-3|=4
=>2x-3=4 hoặc 2x-3=-4
=>x=-1/2 hoặc x=7/2
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
a) \(\sqrt{4x^2-4x+1}=3\)
b)\(\sqrt{x^2-10x+25}+2-x\)
c)\(\sqrt{x^2-6x+9}+x=11\)
d)\(\sqrt{3x+19}=x+3\)
e)\(\sqrt{x^2+x+5}-1=x\)
a: =>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>2x=-2 hoặc 2x=4
=>x=2 hoặc x=-1
c: \(\Leftrightarrow\left|x-3\right|=11-x\)
=>x<=11 và (x-3)^2=(11-x)^2
=>x<=11 và x^2-6x+9=x^2-22x+121
=>x<=11 và 16x=112
=>x=7
d:
ĐKXĐ: 3x+19>=0
=>x>=-19/3
PT =>x>=-3 và (3x+19)=(x+3)^2=x^2+6x+9
=>x>=-3 và x^2+6x+9-3x-19=0
=>x>=-3 và (x+5)(x-2)=0
=>x=2
e: =>\(\sqrt{x^2+x+5}=x+1\)
=>x>=-1 và x^2+x+5=x^2+2x+1
=>x>=-1 và 2x+1=x+5
=>x=4
Cho biết \(\sqrt{25-3x+x^2}-\sqrt{9-3x+x^2}=2\)
Tính M=\(\sqrt{x^2-3x+25}+\sqrt{x^2-3x+9}\)
\(2M=\left(\sqrt{x^2-3x+25}-\sqrt{x^2-3x+9}\right)\)\(\left(\sqrt{x^2-3x+25}+\sqrt{x^2-3x+9}\right)\)
\(2M=x^2-3x+25-x^2+3x-9=16\)
M = 8
Giải pt
\(x^2-2-2\sqrt{1+6x}=2\)
\(\sqrt{25-x^2}-\sqrt{10-x^2}=3\)
\(x^3+2\sqrt{\left(3x-2\right)^3}=3x\left(3x-2\right)\)
Thank u <3 <3
Tìm x:
a)\(\dfrac{1}{3}\sqrt{x-1}+2\sqrt{4x-4}-12\sqrt{\dfrac{x-1}{25}}=\dfrac{29}{15}\)
b)\(\dfrac{3x-2}{\sqrt{x-1}}-\sqrt{x+1}=\sqrt{2x-3}\)
\(\left(1\right)\sqrt{x^2-9}-2\sqrt{x-3}=0\)
\(\left(2\right)\sqrt{4x+1}-\sqrt{3x-4}=1\)
\(\left(3\right)\sqrt{x^2-10x+25}=5-x\)
\(\left(4\right)\sqrt{x^2-8x+16}=x+2\)
1:
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-2\right)=0\)
=>x-3=0 hoặc \(\sqrt{x+3}=2\)
=>x=3 hoặc x+3=4
=>x=1(loại) hoặc x=3(nhận)
2:
\(\Leftrightarrow\left(\sqrt{4x+1}-\sqrt{3x-4}\right)^2=1\)
=>\(4x-1+3x-4-2\sqrt{\left(4x+1\right)\left(3x-4\right)}=1\)
=>\(\sqrt{4\left(4x+1\right)\left(3x-4\right)}=7x-6\)
=>4(12x^2-16x+3x-4)=(7x-6)^2
=>49x^2-84x+36=48x^2-52x-16
=>-84x+36=-52x-16
=>-32x=-52
=>x=13/8
3: =>\(\sqrt{\left(x-5\right)^2}=5-x\)
=>|x-5|=5-x
=>x-5<=0
=>x<=5
4: \(\Leftrightarrow\left|x-4\right|=x+2\)
=>\(\left\{{}\begin{matrix}x>=-2\\\left(x-4\right)^2=\left(x+2\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-2\\x^2-8x+16=x^2+4x+4\end{matrix}\right.\)
=>x>=-2 và -8x+16=4x+4
=>x=1
\(\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{x\sqrt{x}+3x-25}{x+\sqrt{x}-6}\) với x > 0 , x khác 4
Bạn lưu ý lần sau viết đẩy đủ đề bài.
Yêu cầu đề bài mình đoán là rút gọn
\(\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{x\sqrt{x}+3x-25}{x+\sqrt{x}-6}=\frac{(\sqrt{x}+2)(\sqrt{x}-2)-(\sqrt{x}+3)^2}{(\sqrt{x}+3)(\sqrt{x}-2)}+\frac{x\sqrt{x}+3x-25}{(\sqrt{x}+3)(\sqrt{x}-2)}\)
\(=\frac{x-4-(x+6\sqrt{x}+9)+x\sqrt{x}+3x-25}{(\sqrt{x}+3)(\sqrt{x}-2)}=\frac{x\sqrt{x}+3x-6\sqrt{x}-38}{(\sqrt{x}+3)(\sqrt{x}-2)}\)
Rút gọn ra kết quả hơi xấu. Có lẽ phân thức thứ 2 bạn nên đổi lại thành $\frac{\sqrt{x}-3}{\sqrt{x}-2}$