tính độ dài của DE khi biết BH =2cm , HC =4.5
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)
a: Đề sai rồi bạn
a.=> BC = BH + CH = 1 + 3 = 4 cm
áp dụng định lý pitago vào tam giác vuông AHB
\(AB^2=HB^2+AH^2\)
\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)
áp dụng định lí pitago vào tam giác vuông AHC
\(AC^2=AH^2+HC^2\)
\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)
Cho tam giác ABC vuông tại A.Kẻ AH vuông góc BC(H thuộc Bc).Tính độ dài AH,Biết BH=2cm,HC=8cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=2\cdot8=16\)
hay AH=4(cm)
Vậy: AH=4cm
Cho tam giác ABC cân ở A. Kẻ BH vuông góc với AC. Biết AH = 3cm, HC = 2cm. Tính độ dài cạnh BC.
Cho tam giác nhọn ABC cân tại A, kẻ BH vuông góc với AC tại H. Tính độ dài BC biết HA=7cm, HC= 2cm
Ta có: \(AB=AC=HA+HC=7+2=9\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H có:
\(BH=\sqrt{AB^2-AH^2}=\sqrt{9^2-7^2}=4\sqrt{2}\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác BCH vuông tại H có:
\(BC=\sqrt{BH^2+CH^2}=\sqrt{\left(4\sqrt{2}\right)^2-2^2}=2\sqrt{7}\left(cm\right)\)
Cho tam giác ABC cân tại A ; vẽ BH vuông AC ,biết AH = 7cm; HC= 2cm. Tính độ dài các cạnh còn lại trên hình
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác ABC
biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
a, Theo định lí Pytago tam giác ABH vuông tại H
\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm
-> BC = HB + HC = 4 cm
b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến
=> AH = AC/2 = 5/2
Theo định lí Pytago tam giác ABH vuông tại H
\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)
CHO HCN ABCD GỌI H LÀ ĐG VUÔNG GÓC KẺ TỪ A ĐẾN BD BIẾT HC = 2cm BH= 6cm TÍNH CÁC ĐỘ DÀI AD VÀ AB ( LÀM TRÒN ĐẾN HÀNG ĐƠN VỊ )
Cho ABC vuông tại A, đường cao AH a) Cho biết BH = 2cm, HC = 4cm. Tính AH, AB và b) Kẻ phân giác của cắt BC tại D. Lấy điểm E trên AC sao cho DE // AH. Gọi K là giao điểm của AD và BE. Chứng minh rằng: BE . BK = BH . BC
a: \(AH=\sqrt{2\cdot4}=2\sqrt{2}\left(cm\right)\)
\(AB=\sqrt{AH^2+HB^2}=2\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường phân giác BD, kẻ DE vuông góc với BC tại E, gọi H là giao điểm của hai đường thẳng BA và ED. a) Chứng minh rằng AD = DE, AB = BE. b) Biết AB = 6cm, BC = 10cm. Tính độ dài AC, BH. c) Chứng minh rằng AE // HC.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
b: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
c: Xét ΔADH vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADH}=\widehat{EDC}\)
Do đó: ΔADH=ΔEDC
Suy ra: AH=EC
Xét ΔBHC có BA/AH=BE/EC
nên AE//HC