Tìm GTNN của \(x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
Cho \(x,y>0\). Tìm GTNN của biểu thức \(A=\sqrt{x^2+\dfrac{1}{y^2}}+\sqrt{y^2+\dfrac{1}{x^2}}\)
ÁP dụng BĐT Mincopxki, ta có:
\(A\ge\sqrt{\left(x+y\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}\)
\(=\sqrt{\left(x+y\right)^2+\dfrac{\left(x+y\right)^2}{\left(xy\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y\right)^2.\dfrac{\left(x+y\right)^2}{\left(xy\right)^2}}}=\sqrt{\dfrac{2\left(x+y\right)^2}{xy}}\) (cô si)
\(\ge\sqrt{\dfrac{2.4xy}{xy}}=\sqrt{8}=2\sqrt{2}\left(Côsi\right)\)
Min \(A=2\sqrt{2}\Leftrightarrow x=y\)
Cho x>0; y>0. Tìm GTNN của \(A=\sqrt{x}+\sqrt{y}\) biết \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\).
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Tìm GTNN của \(x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
Cho x,y>0 thỏa mãn (x+\(\sqrt{1+x^2}\))(y+\(\sqrt{1+y^2}\))=2018. Tìm GTNN của P=x+yGiúp mk với ạ, please
Đặt \(\left\{{}\begin{matrix}x+\sqrt{1+x^2}=a>0\\y+\sqrt{1+y^2}=b>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1+x^2=a^2+x^2-2ax\\1+y^2=b^2+y^2-2by\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)
Giả thiết trở thành: \(ab=2018\)
\(P=\dfrac{a^2-1}{2a}+\dfrac{b^2-1}{2b}=\dfrac{1}{2}\left(a+b\right)-\dfrac{a+b}{2ab}\)
\(P=\dfrac{1}{2}\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=\dfrac{1}{2}\left(a+b\right).\dfrac{2017}{2018}\ge\sqrt{ab}.\dfrac{2017}{2018}=\dfrac{2017}{\sqrt{2018}}\)
\(P_{min}=\dfrac{2017}{\sqrt{2018}}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2017}{2\sqrt{2018}}\)
cho x,y thỏa mãn: \(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\) tìm GTLN, GTNN của P=\(\left(x+y\right)^2-\sqrt{9-x-y}+\frac{1}{\sqrt{x+y}}\)
Đk: \(x\ge2;y\ge-1;0< x+y\le9\)
Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)
Từ giả thiết suy ra
\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)
Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:
\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)
\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)
Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)
Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)
\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Tìm GTNN của biểu thức :\(P=x^2-x\sqrt{y}+x+y-\sqrt{y}+1\)
1)Cho x+y+z=1
Tìm GTLN của \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
2) Cho \(x+y+z\le\frac{3}{2}\)
Tìm GTNN của \(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\)
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
Mình nhầm chỗ câu b, sửa lại là :
\(B\ge3\sqrt[3]{\sqrt{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}}\)
Bạn làm tương tự => \(B\ge3\sqrt{2}\).
Tìm GTNN của hàm số
\(y=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)
Ta có : \(\sqrt{x+1}\) có nghĩa khi `x >= -1` Từ đk ta có :
\(x+2\left(1+\sqrt{x+1}\right)=x+1+2\sqrt{x+1}+1=\left(\sqrt{x+1}+1\right)^2\)
\(\Leftrightarrow\sqrt{x+2\left(1+\sqrt{x+1}\right)}=\sqrt{x+1}+1\)
\(x+2\left(1-\sqrt{x+1}\right)=x+1-2\sqrt{x+1}+1=\left(\sqrt{x+1}-1\right)^2\\ \Leftrightarrow\sqrt{x+2\left(1-\sqrt{x+1}\right)}=\left|\sqrt{x+1}-1\right|\)
Ta có : \(y=\sqrt{x+1}+1+\left|\sqrt{x+1}-1\right|\) `(1)`
Ta bỏ dấu \(\left|\right|\) ở `1`
Ta có TH :
`-1<= x <= 0` ; lúc này \(\sqrt{x+1}-1\le0\)
nên : \(\left|\sqrt{x+1}-4\right|=1-\sqrt{x+1}\)
`1` trở thành : `y=2`
`x>0` lúc này \(\sqrt{x+1}-1>0\) nên
\(\left|\sqrt{x+1}-1\right|=\sqrt{x+1}-1\)
`1` trở thành : \(y=2\sqrt{x+1}>2\left(x>0\right)\)
Vì : \(y=\left\{{}\begin{matrix}2khi-1\le x\le0\\2\sqrt{x+1}kh\text{i}>0\end{matrix}\right.\)
gtnn của `y=2` với mọi \(x\in\left[-1;0\right]\)