Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cíu iem
Xem chi tiết
Huỳnh Thị Thanh Ngân
18 tháng 10 2021 lúc 19:49

Do câu d mình ko biết làm bởi v mình không làm được

undefined

 

trâm lê
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 11 2021 lúc 22:38

1D  2C

Nguyễn Lê Phước Thịnh
1 tháng 11 2021 lúc 22:39

Câu 1: D

Câu 2: C

Tiến Đạt
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 11 2021 lúc 14:09

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Trần Ngọc Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phạm Tiến
8 tháng 9 2017 lúc 18:58

a) x^3−3x^2−4x+12

=(x^3-3x^2)-(4x-12)

=x^2(x-3)-4(x-3)

=(x-3)(x^2-4)=(x-3)(x-2)(x+2)

b) x^4-5x^2+4=x^4-x^2-4x^2+4

=(x^4-x^2) - ( 4x^2-4)

=x^2(x^2-1) - 4(x^2-1)

=(x^2-1)(x^2-4)

=(x-1)(x+1)(x-2)(x+2)

c) (x+y+z)^3-x^3-y^3-z^3

=x^3+y^3+z^3+3x^2yz+3xy^2z+3xyz^2-x^3-y^3-z^3

=3x^2yz+3xy^2z+3xyz^2

3xyz(x+y+z)

lê thị phương uyên
Xem chi tiết
Nguyễn Thị BÍch Hậu
13 tháng 6 2015 lúc 17:05

a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)

b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)

đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha

c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.

có gì liên hệ chị. đúng nha ;)

Phan Thị Hồng Nhung
Xem chi tiết
Đông Tatto
Xem chi tiết
Đông Tatto
25 tháng 1 2019 lúc 21:32

nhanh hộ mk cái

quách anh thư
25 tháng 1 2019 lúc 21:36

x^10 + x^5 + 1 
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1 
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1) 
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1) 
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1) 

quách anh thư
25 tháng 1 2019 lúc 21:39

x^6 + 3x^5 + 4x^4 + 4x^3 + 4x^2 + 3x + 1
Câu này có thể áp dụng định lý : nếu tổng các hệ số biến bậc chắn và tổng các hệ số biến bậc lẻ bằng nhau thì đa thức có nhân tử x + 1 
- Nhận thấy : 1+4+4+1 = 3+4+3
x^6 + 3x^5 + 4x^4 + 4x^3 + 4x^2 + 3x + 1
= ( x^6 + x^5 ) + ( 2x^5 + 2x^4 ) + ( 2x^4 + 2x^3 ) + ( 2x^3 + 2x^2 ) + ( 2x^2 + 2x ) + ( x+ 1 )
= x^5.(x+1) + 2x^4.(x+1) + 2x^3.(x+1) + 2x^2.(x+1) + 2x.(x+1) + ( x+1 )
= ( x+1 )( x^5 + 2x^4 + 2x^3 + 2x^2 + 2x + 1 )
Tiếp tục phân tích bằng cách trên vì 1+2+2 = 2+2+1 

= ( x+1)(x+1)(x^4 + x^3 + x^2 + x +1 )
= (x+1)^2 . ( x^4 + x^3 + x^2 + x + 1 )

nguyễn thảo hân
Xem chi tiết
pham trung thanh
5 tháng 11 2017 lúc 9:51

a)\(x^3-3x^2-4x+12\)

\(=\left(x^3-3x^2\right)-\left(4x-12\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)

b) \(x^4-5x^2+4\)

\(=\left(x^4-4x^2\right)-\left(x^2-4\right)\)

\(=\left(x^2-4\right)\left(x^2-1\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)\)

Kaito Kid
5 tháng 11 2017 lúc 9:52

ban kia lam dung roi do

k tui nha

thanks

pham trung thanh
5 tháng 11 2017 lúc 9:55

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)\left(x+y+z\right)z+z^3-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(xz+yz+z^2\right)-x^3-y^3\)

\(=3\left(x+y\right)\left(xy+yz+zx+z^2\right)\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)