Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
qưet
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:20

1.

\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)

\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)

Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá

2.

\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)

Đặt \(x+y+z=t\Rightarrow0< t\le1\)

\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:30

3.

\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)

Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)

Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)

4.

ĐKXĐ: \(-2\le x\le2\)

\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)

\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)

Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)

\(y_{min}=-2\) khi \(x=-2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 13:32

5.

\(\frac{a\sqrt{b-1}+b\sqrt{a-1}}{ab}=\frac{1.\sqrt{b-1}}{b}+\frac{1.\sqrt{a-1}}{a}\le\frac{1+b-1}{2b}+\frac{1+a-1}{2a}=1\)

\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le ab\)

Dấu "=" xảy ra khi \(a=b=2\)

6. Áp dụng BĐT cơ bản:

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow\left(ab+bc+ca\right)^2\ge3\left(ab.bc+bc.ca+ab+ca\right)\)

\(\Rightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Khách vãng lai đã xóa
Đinh Thị Ngọc Anh
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Lightning Farron
14 tháng 2 2017 lúc 22:29

c)Từ gt suy ra:

\(\frac{1}{1+a}\geq\frac{c}{c+1}+\frac{b}{b+1}\)\( \geq2.\sqrt{\frac{bc}{(c+1)(b+1)}}\)

\(\frac{1}{1+b}\geq \frac{a}{a+1}+\frac{c}{c+1}\)\(\geq 2\sqrt{\frac{ac}{(a+1)(c+1)}}\)

\(\frac{1}{1+c}\geq\frac{a}{a+1}+\frac{b}{b+1}\)\(\geq 2\sqrt{\frac{ab}{(a+1)(b+1)}}\)

Từ 3 BĐT trên suy ra

\((1+a).(1+b).(c+1)\leq \frac{1}{8}.\frac{(a+1).(b+1).(c+1)}{a.b.c}\)\(\Rightarrow abc\leq\frac{1}{8}\)

Akai Haruma
14 tháng 2 2017 lúc 23:43

Câu a)

Từ giả thiết \(15x^2-7y^2=9\Rightarrow 3|y^2\Rightarrow 3|y\). Đặt \(y=3y_1(y_1\in\mathbb{Z}^+)\)

Phương trình trở thành:

\(15x^2-63y_1^2=9\Leftrightarrow 5x^2-21y_1^2=3\Rightarrow 3|x^2\Rightarrow 3|x\)

Đặt \(x=3x_1(x_1\in\mathbb{Z}^+)\)

\(\text{PT}\Leftrightarrow 45x_1^2-21y_1^2=3\Leftrightarrow 15x_1^2-7y_1^2=1\Rightarrow 3|7y_1^2+1\)

\(\Leftrightarrow 3| y_1^2+1\Leftrightarrow y_1^2\equiv 2\pmod 3\)

Điều này vô lý vì số chính phương chia \(3\) chỉ có thể dư \(0,1\)

Do đó PT vô nghiệm.

Hung nguyen
15 tháng 2 2017 lúc 8:46

Người làm câu a, người làm câu c. Tính bỏ câu b à. Vậy để t làm luôn cho nó hết.

b/ Ta đặt: \(\left\{\begin{matrix}\sqrt{3+2x}=u\\\sqrt{3-2x}=v\end{matrix}\right.\)từ đây ta có

\(\Rightarrow\left\{\begin{matrix}u-v=a\\u^2+v^2=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u-v=a\\\left(u-v\right)^2+2uv=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u-v=a\\uv=\frac{6-a^2}{2}\left(1\right)\end{matrix}\right.\)

Ta lại có: \(\left\{\begin{matrix}u^2+v^2=6\\u^2-v^2=4x\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(u+v\right)^2-2uv=6\\\left(u+v\right)\left(u-v\right)=4x\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(u+v\right)=\sqrt{6+6-a^2}\\x=\frac{\left(u+v\right)\left(u-v\right)}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}u+v=\sqrt{12-a^2}\\x=\frac{a\sqrt{12-a^2}}{4}\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) thì ta có: \(\left\{\begin{matrix}uv=\frac{6-a^2}{2}\\x=\frac{a\sqrt{12-a^2}}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\sqrt{3+2x}.\sqrt{3-2x}=\frac{6-a^2}{2}\\x=\frac{a.\sqrt{12-a^2}}{4}\end{matrix}\right.\)

Theo đề thị:

\(P=\frac{\sqrt{6+2\sqrt{9-4x^2}}}{x}=\frac{\sqrt{6+2\sqrt{\left(3+2x\right)\left(3-2x\right)}}}{x}\)

\(=\frac{\sqrt{6+2.\frac{6-a^2}{2}}}{\frac{a.\sqrt{12-a^2}}{4}}=\frac{4\sqrt{12-a^2}}{a\sqrt{12-a^2}}=\frac{4}{a}\)

bach nhac lam
Xem chi tiết
tthnew
25 tháng 4 2020 lúc 18:22

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

zZz Cool Kid zZz
26 tháng 4 2020 lúc 11:26

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

bach nhac lam
2 tháng 3 2020 lúc 23:47
Khách vãng lai đã xóa
Thiều Khánh Vi
Xem chi tiết
Trần Thanh Phương
19 tháng 8 2019 lúc 11:48

2.

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1+9^2\right)\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow82\cdot\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow\sqrt{82}\cdot\sqrt{x^2+\frac{1}{x^2}}\ge x+\frac{9}{x}\)

Tương tự ta cũng có :

\(\sqrt{82}\cdot\sqrt{y^2+\frac{1}{y^2}}\ge y+\frac{9}{y}\)

\(\sqrt{82}\cdot\sqrt{z^2+\frac{1}{z^2}}\ge z+\frac{9}{z}\)

Cộng theo vế của các bất đẳng thức ta được :

\(\sqrt{82}\cdot\left(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\right)\ge x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)

\(\Leftrightarrow\sqrt{82}\cdot P\ge x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}\)(1)

Mặt khác áp dụng bất đẳng thức Cauchy ta có :

\(x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}=81x+\frac{9}{x}+81y+\frac{9}{y}+81z+\frac{9}{z}-80x-80y-80z\)

\(\ge2\sqrt{\frac{81x\cdot9}{x}}+2\sqrt{\frac{81y\cdot9}{y}}+2\sqrt{\frac{81z\cdot9}{z}}-80\left(x+y+z\right)\)

\(\ge2\sqrt{729}+2\sqrt{729}+2\sqrt{729}-80\cdot1\)

\(=82\) (2)

Từ (1) và (2) suy ra \(\sqrt{82}\cdot P\ge82\)

\(\Leftrightarrow P\ge\sqrt{82}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

Trần Thanh Phương
19 tháng 8 2019 lúc 11:52

1.

Áp dụng bất đẳng thức Cauchy :

\(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)

\(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)

\(=9a+\frac{1}{a}+9b+\frac{1}{b}+9c+\frac{1}{c}-8a-8b-8c\)

\(\ge2\sqrt{\frac{9a}{a}}+2\sqrt{\frac{9b}{b}}+2\sqrt{\frac{9c}{c}}-8\left(a+b+c\right)\)

\(\ge3\cdot2\sqrt{9}-8=10\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Nguyễn Thị Hằng
Xem chi tiết
Akai Haruma
30 tháng 4 2019 lúc 0:35

Bài 1:

Áp dụng BĐT AM-GM:

\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)

\(\Rightarrow 4\leq x+y\)

Tiếp tục áp dụng BĐT AM-GM:

\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)

\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)

\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)

Mà:

\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)

\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)

\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)

Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)

Akai Haruma
30 tháng 4 2019 lúc 0:45

Bài 2:

\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)

\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)

\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)

\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)

\(\Rightarrow B\geq 24\)

Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)

Akai Haruma
30 tháng 4 2019 lúc 1:01

Bài 3:
Áp dụng BĐT AM-GM cho các số dương ta có:

\(4=2x^2+\frac{1}{x^2}+\frac{y^2}{4}=x^2+x^2+\frac{1}{x^2}+\frac{y^2}{4}\geq 4\sqrt[4]{\frac{x^2y^2}{4}}\)

\(\Rightarrow 4\geq x^2y^2\Rightarrow 2\geq xy\geq -2\)

Ta thấy khi $xy$ càng tiến về $0$ và dương thì $C=\frac{1}{xy}$ càng lớn. Do đó $C=\frac{1}{xy}$ không có GTLN.

Nguyễn Hồng Thắm
Xem chi tiết
Nguyễn Hồng Thắm
6 tháng 10 2018 lúc 11:12

Ai giải giúp mình bài 1 với bài 4 trước đi

Phúc Trần
Xem chi tiết
phan tuấn anh
20 tháng 1 2016 lúc 22:50

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

Phúc Trần
20 tháng 1 2016 lúc 22:53

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!

Mailika Jibu Otochi
20 tháng 1 2016 lúc 23:19

cậu siêu quá , viết thế này chắc tớ chết mất , bạn tải mỗi lần 1, 2 câu thôi .

Nguyễn Kiều Anh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2019 lúc 19:53

2/

a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)

b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)

Dấu "=" khi \(a=b=\frac{1}{4}\)

c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm

Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)

Cộng vế với vế ta được:

\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)

Dấu "=" khi \(x=y=z\)

d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)

\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)

e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)

\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)

Nguyễn Kiều Anh
5 tháng 3 2019 lúc 17:15

@Akai Haruma Cô giúp em với ạ!!!

Ma Sói
5 tháng 3 2019 lúc 18:15

? Cosi thôi câu 1 2 phần II