Lập phương trình đường tròn ngoại tiếp tam giác có tọa độ các đỉnh là:
a) \(M(2;5),N(1;2),P(5;4)\)
b) \(A(0;6),B(7;7),C(8;0)\)
cho tam giác ABC có tâm đường tròn ngoại tiếp I(1;-2). đường cao và đường trung tuyến kẻ từ A lần lượt có phương trình 2x+y-10=0 và y-2=0. tìm tọa độ các đỉnh của tam giác?
Viết phương trình các cạnh và các đường trung trực của tam giác ABC biết trung điểm của các cạnh BC, CA, AB lần lượt là M(2,3), N(4,-1), P(-3,5). Xác định tọa độ của các đỉnh tam giác ABC và tâm đường tròn ngoại tiếp tam giác ABC.
Cho mặt phẳng Oxy cho tam giác ABC có A(-1; 2), B(-2; -4), C(1; 2)
1) Viết phương trình tổng quát đường thẳng AC, phương trình tham số đường trung tuyến CM.
2) Tìm tọa độ trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp I của tam giác ABC.
3) Tính chu vi, diện tích tam giác ABC.
4) Tính số đo góc tạo bởi 2 đường thẳng AB và AC.
5) Viết phương trình đường tròn ngoại tiếp tam giác ABC. Lập phương trình tiếp tuyến của đường tròn tại điểm A.
6) Lập phương trình đường tròn tâm C và tiếp xúc với đường thẳng AB.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm H(2;3) và phương trình đường tròn đi qua chân các đường cao của tam giác ABC có phương trình (C): x2 + y2 - 4x - 4y +1 =0. Viết phương trình đường tròn ngoại tiếp tam giác ABC
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tâm đường tròn ngoại tiếp là điểm J(4;0) và phương trình hai đường thẳng lần lượt chứa đường cao và đường trung tuyến từ đỉnh A của tam giác ABC là d 1 : x + y – 2 = 0 và d 2 : x + 2 y - 3 = 0 . Tìm tọa độ điểm C, biết B có tung độ dương.
A. C(3;-3).
B. C(7;1).
C. C(1;1).
D. C(-3;-9).
cho hệ trục tọa độ OXY , hình vuông ABCD, E(7;3) thuộc BC.đường tròn ngoại tiếp tam giác ABE cắt đường chéo BD tại N (N <> B),đường thẳng AN có phương trình 7x+11y+3=0. tìm tọa độ các đỉnh biết A có tung độ dương,C có hoàng độ nguyên và nằm trên đường thẳng 2x-y-23=0
Các đường cao tam giác ABC có phương trình x + y = 2 và 9x - 3y = 4, tọa độ đỉnh A(2:2) lập phương trình các cạnh tam giác ABC
Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trực tâm H, trọng tâm G(-1;3). Gọi K, M, N lần lượt là trung điểm của AH, AB, AC. Tìm phương trình đường tròn ngoại tiếp tam giác ABC biết rằng đường tròn ngoại tiếp tam giác KMN là (C): x2+y2+4x-4y-17=0.
bài 1
câu 1.1: Cho 3 điểm A(4;3) B(2;7) C(-3;-8)
a. Viết phương trình đường cao từ đỉnh A của tam giác ABC. Tìm tọa độ trực tâm H của tam giác ABC
b. Viết phương trình đường tròn ngoại tiếp tam giác ABC
Câu 1.2: Trong mặt phẳng Oxy, cho điểm A(-1;4) B(3;2)
a. Viết phương trình tổng quát của đường thẳng AB
b. Viết phương trình đường tròn đường kính AB
Câu 2: Trong mặt phẳng Oxy, cho đường tròn (C): (x-3)2 + (y+2)2 = 16
a. Tìm tâm và bán kính của đường tròn (C)
b. Viết phương trình đường thẳng (d) tiếp xúc với đường tròn (C) biết d || △: 3x-4y+2= 0
mong mn giúp ạ
1.2
a.
\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận (1;2) là 1 vtpt
Phương trình đường thẳng AB:
\(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)
b.
Gọi M là trung điểm AB \(\Rightarrow M\left(1;3\right)\)
\(AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\) \(\Rightarrow AM=\dfrac{1}{2}AB=\sqrt{5}\)
Đường tròn đường kính AB có tâm M và bán kính \(R=AM=\sqrt{5}\) nên có pt:
\(\left(x-1\right)^2+\left(y-3\right)^2=5\)
1.1
a. \(\overrightarrow{CB}=\left(5;15\right)=5\left(1;3\right)\) ; \(\overrightarrow{CA}=\left(7;11\right)\)
Đường cao qua A vuông góc BC nên nhận (1;3) là 1 vtpt
Phương trình đường cao đi qua A có dạng:
\(1\left(x-4\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-13=0\)
Đường cao qua B vuông góc AC nhận (7;11) là 1 vtpt có dạng
\(7\left(x-2\right)+11\left(y-7\right)=0\Leftrightarrow7x+11y-91=0\)
Trực tâm H là giao điểm 2 đường cao nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x+3y-13=0\\7x+11y-91=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=13\\y=0\end{matrix}\right.\)
\(\Rightarrow H\left(13;0\right)\)
1.1
b.
Gọi tâm đường tròn ngoại tiếp là \(I\left(a;b\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a-4;b-3\right)\\\overrightarrow{BI}=\left(a-2;b-7\right)\\\overrightarrow{CI}=\left(a+3;b+8\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a-4\right)^2+\left(b-3\right)^2\\BI^2=\left(a-2\right)^2+\left(b-7\right)^2\\CI^2=\left(a+3\right)^2+\left(b+8\right)^2\end{matrix}\right.\)
Do I là tâm đường tròn nên: \(\left\{{}\begin{matrix}AI=BI\\AI=CI\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}AI^2=BI^2\\AI^2=CI^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-4\right)^2+\left(b-3\right)^2=\left(a-2\right)^2+\left(b-7\right)^2\\\left(a-4\right)^2+\left(b-3\right)^2=\left(a+3\right)^2+\left(b+8\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2b+7=0\\7a+11b+24=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-5\\b=1\end{matrix}\right.\)
\(\Rightarrow I\left(-5;1\right)\Rightarrow\overrightarrow{CI}=\left(-2;9\right)\Rightarrow R^2=CI^2=\left(-2\right)^2+9^2=85\)
Phương trình đường tròn:
\(\left(x+5\right)^2+\left(y-1\right)^2=85\)