Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Tuấn Việt
Xem chi tiết
Đinh Tuấn Việt
8 tháng 7 2015 lúc 22:05

Mình cần cách giải cơ mà ! Chưa chắc chỉ có p = 3 đâu !

Nguyễn Nam Cao
8 tháng 7 2015 lúc 22:07

Chưa chắc có mỗi p = 3 đâu

Đinh Tuấn Việt
8 tháng 7 2015 lúc 22:08

Cách giải, không có thì đừng trả lời cho tôi nhờ ! Thôi tắt đây, ở đây khó chịu quá !

ninja sóc nhí
Xem chi tiết
Đặng Yến Ngọc
18 tháng 11 2018 lúc 22:19

p=3

mk có thể giải nhưng nó dài quá vs lại mk hơi lười bn thông cảm

ninja sóc nhí
18 tháng 11 2018 lúc 22:20

bạn làm ơn giải ra được ko

Người
18 tháng 11 2018 lúc 22:21

P=3

Bn lên mạng mà xem cách làm 

Lê Công Thành
Xem chi tiết
Đinh Tuấn Việt
1 tháng 7 2015 lúc 14:11

p = 3

  Nếu là ở Violympic thì chỉ ra đáp án được thôi ! 

nguyen tien dung
1 tháng 7 2015 lúc 14:17

nếu p ko thể bằng 2 vì nếu p=2

thì p+14=2+14=16  suy ra ko phải số nguyên tố 

    p+20=2+20=22  suy ra cũng ko phải số nguyên tố

nếu p=3 thì

p+14=3+14=17 là số nguyên tố

p+20=3+20=23 cung là số nguyên tô

nếu p>3 thì mâu thuẫn với đề bài và ko tim ra được p

Nguyễn Ngọc Thảo Vy
Xem chi tiết
Ngô Linh Quân
Xem chi tiết
Carthrine
18 tháng 10 2015 lúc 9:08

mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2) 
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.

nguyễn thị yến nhi
Xem chi tiết
Yuuki Asuna
26 tháng 11 2016 lúc 20:43

a)

+) Nếu p = 2 thì p + 10 = 2 + 10 = 12 → Hợp số ( loại)

+) Nếu p = 3 thì p + 10 = 3 + 10 = 13 ; p + 14 = 17 → Số nguyên tố ( thỏa mãn )

+) Nếu p > 3 thì p có dạng : 3k + 1 hoặc 3k + 2

- Với p = 3k + 1 thì p + 14 = 3k + 1+ 14 = 3k + 15 chia hết cho 3 → Hợp số ( loại )

- Với p = 3k + 2 thì p + 10 = 3k + 2 +10 = 3k + 12 chia hết cho 3 → Hợp số (loại)

Vậy p = 3

 

Công Chúa Sakura
1 tháng 1 2017 lúc 22:59

a)

- Nếu p = 2 => p + 10 = 2 + 10 = 12 là hợp số

=> p = 2 (loại)

- Nếu p = 3 => p + 10 = 3 + 10 = 13 là số nguyên tố

p + 14 = 3 + 14 = 17 là số nguyên tố

- Nếu p > 3 ; p là số nguyên tố thì p có dạng 3k + 1 và 3k + 2

+ p = 3k + 1 => p + 14 = 3k + 1 + 14 = 3k + 15 \(⋮\)3 là hợp số

=> p = 3k + 1 (loại)

+ p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 là hợp số

=> p = 3k + 2 (loại)

Vập p = 3

b)

- Nếu p = 2 => p + 2 = 2 + 2 = 4 là hợp số

=> p = 2 (loại)

- Nếu p = 3 => p + 6 = 3 + 6 = 9 là hợp số

=> p = 3 (loại)

- Nếu p = 5 => p + 2 = 5 + 2 = 7 là số nguyên tố

p + 6 = 5 + 6 =11 là số nguyên tố

p + 8 = 5 + 8 = 13 là số nguyên tố

=> p = 5 (chọn)

- Nếu p > 5; p là số nguyên tố thì p có dạng là 5k - 1

p = 5k - 1 => p + 6 = 5k - 1 + 6 = 5k + 5 \(⋮\)5 là hợp số

=> p = 5k - 1 (loại)

Vập p = 5

Mình không biết phần b mình làm đúng không nữa!

Chúc bạn học tốt!

hoàng đức hiếu
Xem chi tiết
hoàng đức hiếu
28 tháng 10 2016 lúc 15:16

Ai nhanh minh  cho

Lê Minh Vũ
15 tháng 10 2021 lúc 8:28

\(a)\)Vì \(p\)là số nguyên tố

\(\Leftrightarrow\)\(p\in\left\{2;3;5;7;...\right\}\)

\(+)\)\(p=2\Leftrightarrow p+2=2+2=4\)( hợp số ) ( loại )

\(+)\)\(p=3\Leftrightarrow\hept{\begin{cases}p+2=3+2=5\\p+3=3+10=13\end{cases}}\)( thỏa mãn )

\(+)\)\(p>3\)mà \(p\)là số nguyên tố nên \(p\)có 2 dạng:

\(+)\)\(p=3k+1\left(k\in N\right)\Leftrightarrow p+2=3k+3⋮3\)( hợp số )

\(+)\)\(p=3k+2\Leftrightarrow p+10=3k+12⋮3\)( hợp số )

Vậy \(p=3\)\(\left(đpcm\right)\)

Khách vãng lai đã xóa
Lê Minh Vũ
15 tháng 10 2021 lúc 8:38

\(b)\)Với \(p=2\Rightarrow p+10=2+10=12\)( ko là số nguyên tố  )   \(\Rightarrow\) ( loại )

Với \(p=3\Rightarrow p+10=3+10=13\)

\(\Rightarrow\)\(p+20=20+3=23\)( đều là các số nguyên tố )   \(\Rightarrow\) ( chọn )

Nếu \(p\)chia cho 3 dư 1 \(\Rightarrow\)\(p=3k+1\left(k\in N\right)\)

\(\Rightarrow\)\(p+20=3k+1+20\)

\(=\)\(3k+21=3\left(k+7\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\))

\(\Rightarrow\)\(3\left(k+7\right)\)là hợp số ; hay \(p+20\)là hợp số \(\Rightarrow\)( loại )

Nếu \(p\)chia 3 dư 2 \(\Rightarrow\)\(p=3k+2\left(k\in N\right)\)

\(\Rightarrow\)\(p+10=3k+2+10\)

\(=\)\(3k+12=3\left(k+4\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\))

\(\Rightarrow\)\(3\left(k+4\right)\)là hợp số; hay \(p+10\)là hợp số \(\Rightarrow\)( loại )

Vậy \(p=3\)thỏa mãn đề bài \(\left(đpcm\right)\)

Khách vãng lai đã xóa
Hồ Mỹ linh
Xem chi tiết
Vương Hy
Xem chi tiết
hoang thi lien
1 tháng 8 2017 lúc 20:00

hinh nhu may bai nay lop tren thi phai minh hoc lop 5 ma khong biet

Lê Vũ Hưng
15 tháng 11 2017 lúc 14:58

Câu đó này khó đến cả mình không giải được!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

nguyenbatoan
16 tháng 12 2017 lúc 19:21

đó là bài lớp 6 nha mấy bạn