Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Ly
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 8 2020 lúc 8:48

Ít thôi -..-

a) ( 3x + 2 )( 2x + 9 )  - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )

<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )

<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4

<=> 12x + 15 = 2x + 5

<=> 12x - 2x = 5 - 15

<=> 10x = -10

<=> x = -1

b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )

<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20

<=> 3x2 - 12x - 2 = 3x2 - 17x + 20

<=> 3x2 - 12x - 3x2 + 17x = 20 + 2

<=> 5x = 22

<=> x = 22/5

c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8

<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8

<=>  x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

<=> 12x + 16 = -8

<=> 12x = -24

<=> x = -2

d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16

<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16

<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16

<=> 8x2 - 9x - 4 = 16

<=> 8x2 - 9x - 4 - 16 = 0

<=> 8x2 - 9x - 20 = 0

( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm

                                                         2 là nghiệm vô tỉ =) )

Khách vãng lai đã xóa
Huỳnh Quang Sang
28 tháng 8 2020 lúc 8:49

a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)

=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)

=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4

=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)

=> 12x + 15 = 2x + 5

=> 12x + 15  - 2x - 5 = 0

=> 10x + 10 = 0

=> 10x = -10 => x = -1

b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)

=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)

=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20

=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20

=> 3x2 - 12x - 2 = 3x2 - 17x + 20

=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0

=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0

=> 5x - 22 = 0

=> 5x = 22 => x = 22/5

c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8

=> x3 + 6x2 + 12x + 8 - (x3  - 6x2 + 12x - 8) - 12x2 + 12x = -8

=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8

=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8

=> 12x + 16 = -8

=> 12x = -24

=> x = -2

Còn bài cuối làm nốt

Khách vãng lai đã xóa
Long
Xem chi tiết
Phạm Thị Thùy Linh
24 tháng 8 2019 lúc 19:48

\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)

\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)

\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)

\(=-10x^3+19x^2+74x+1\)

\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)

\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)

\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)

\(=-5x^4-11x^3+24x^2+12x+7\)

\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)

\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)

\(=-2x^2-27x+57\)

Phạm Thị Thùy Linh
24 tháng 8 2019 lúc 19:53

\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)

\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)

\(=-x^3+4x^2+22x+5\)

\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)

\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)

\(=-9x^3-55x^2+4x+35\)

\(g,\left(x-1\right)^2-\left(x+2\right)^2\)

\(=x^2-2x+1-x^2-4x-4\)

\(=-6x-3\)

Hòa Thanh Hải
23 tháng 3 2021 lúc 21:42
Hữu ý đã đi đứt Tự Đức tiểu sử đi đứt đi đứt tái diễn yếu đuối
Khách vãng lai đã xóa
Trần Hà Anh
Xem chi tiết
Xem chi tiết
Nguyễn Văn Lâm ( ✎﹏IDΣΛ...
20 tháng 8 2021 lúc 22:44

\(1,\)

\(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)

\(2,\)

\(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

\(3,\)

\(x^4-x^2=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(4,\)

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(5,\)

\(x\left(x+6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow x^2+6x-10x+60=0\)

\(\Leftrightarrow x^2-4x+60=0\)

\(\Leftrightarrow x^2-4x+4+56=0\)

\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)

=> Phương trình vô nghiệm

Khách vãng lai đã xóa
Lê Đức Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2023 lúc 22:10

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2

Nguyễn Hoài
Xem chi tiết
Names
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 12:13

a: =>2x-3x^2-x<15-3x^2-6x

=>x<-6x+15

=>7x<15

=>x<15/7

b: =>4x^2-24x+36-4x^2+4x-1>=12x

=>-20x+35>=12x

=>-32x>=-35

=>x<=35/32

\(a,2x-x\left(3x+1\right)< 15-3x\left(x+2\right)\\ \Leftrightarrow2x-3x^2-x< 15-3x^2-6x\\ \Leftrightarrow3x^2-3x^2+2x+6x-x< 15\\ \Leftrightarrow7x< 15\\ \Leftrightarrow x< \dfrac{15}{7}\)

Vậy S={-∞; 15/7}

\(b,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12x\\ \Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-12x\ge0\\ \Leftrightarrow4x^2-4x^2-24x+4x-12x\ge-36+1\\ \Leftrightarrow-32x\ge-35\\ \Leftrightarrow x\le\dfrac{35}{32}\)

Vậy S={-∞; 35/32]

Haly
Xem chi tiết
HT.Phong (9A5)
19 tháng 6 2023 lúc 14:42

\(\left(x+2\right)-2=0\)

\(\Rightarrow x+2-2=0\)

\(\Rightarrow x=0\)

\(\left(x+3\right)+1=7\)

\(\Rightarrow x+3+1=7\)

\(\Rightarrow x+4=7\)

\(\Rightarrow x=3\)

\(\left(3x-4\right)+4=12\)
\(\Rightarrow3x-4+4=12\)

\(\Rightarrow3x=12\)

\(\Rightarrow x=4\)

\(\left(5x+4\right)-1=13\)

\(\Rightarrow5x+4-1=13\)

\(\Rightarrow5x+3=13\)

\(\Rightarrow5x=10\)

\(\Rightarrow x=2\)

\(\left(4x-8\right)-3=5\)

\(\Rightarrow4x-8-3=5\)

\(\Rightarrow4x-11=5\)

\(\Rightarrow4x=16\)

\(\Rightarrow x=4\)

\(8-\left(2x+4\right)=2\)

\(\Rightarrow8-2x-4=2\)

\(\Rightarrow4-2x=2\)

\(\Rightarrow2x=2\)

\(\Rightarrow x=1\)

\(7+\left(5x+2\right)=14\)

\(\Rightarrow7+5x+2=14\)

\(\Rightarrow9+5x=14\)

\(\Rightarrow5x=5\)

\(\Rightarrow x=1\)

\(5-\left(3x-11\right)=1\)

\(\Rightarrow5-3x+11=1\)

\(\Rightarrow16-3x=1\)

\(\Rightarrow3x=15\)

\(\Rightarrow x=5\)

Đỗ Phương Anh
Xem chi tiết
Kiệt Nguyễn
18 tháng 10 2019 lúc 20:45

a) \(3x^2-2x=0\)

Phương trình này xác định với mọi x

b)\(\frac{1}{x-1}=3\)

pt xác định \(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)

c) \(\frac{2}{x-1}=\frac{x}{2x-4}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\2x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne2\end{cases}}\)

d) \(\frac{2x}{x^2-9}=\frac{1}{x+3}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x^2-9\ne0\\x+3\ne0\end{cases}}\Leftrightarrow x\ne\pm3\)

e) \(2x=\frac{1}{x^2-2x+1}\)

pt xác định\(\Leftrightarrow x^2-2x+1\ne0\Leftrightarrow\left(x-1\right)^2\ne0\)

\(\Leftrightarrow x-1\ne0\Leftrightarrow x\ne1\)

f) \(\frac{1}{x-2}=\frac{2x}{x^2-5x+6}\)

\(\Leftrightarrow\frac{1}{x-2}=\frac{2x}{\left(x-3\right)\left(x-2\right)}\)

pt xác định\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\left(x-2\right)\left(x-3\right)\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

  
Khách vãng lai đã xóa