Cho x,y,z thoả mãn xyz=1 và x+y+z = 1:x + 1:y + 1:z
Tính giá trị biểu thức B= (x5-1)(y5-1)(z2016-1)
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)
Do \(x-y-z=0\)
\(\Rightarrow x-z=y;y-x=-z;y+z=x\)
Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Vậy A=-1
\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)
\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)
\(=\frac{yz+y+1}{yz+y+1}\)
\(=1\)
Bài 3:
b) cho x,y,z là các số thựu thoả mãn xyz=1. tính giá trị của biểu thức
T= 2022/1+x+xy + 2022/1+y+yz + 2022/1+z+zx
1) Cho x, y, z là các số thực thoả mãn xyz = 1
CMR: 1/1+x+xy + 1/1+y+yz + 1/1+z+zx = 1
2)Cho a, b, c là các số thực khác 0 thoả mãn a+b-c/c = b+c-a/a = a+c-b/b
Tính giá trị của biểu thức P= (1 + b/a).(1 + c/b).(1 + a/c)
chào bạn. tôi nghĩ rằng bạn đủ thông minh để làm nên tích đi đã r tôi sẽ giúp @*
cho x, y,z đều khác 0 thỏa mãn x+y+z=xyz và1/x+1/y+1/z=căn 3
Tính giá trị biểu thức: M=1/x^2+1/y^2+1/z^2
cho x, y ,z là các số thực không âm thoả mãn x + y + z = 1. Tính giá trị biểu thức P= √2x2+x+1 + √2y2+y+1 + √2z2+z+1
Biểu thức này không có giá trị cụ thể. Bạn xem lại đề.
cho x,y,z khác 0,x+y+z khác 0 thoả mãn 1/x+1/y+1/z=1/x+y+z. tính giá trị biểu thức A=(x+y)(y^3+z^3)(z^5+x^5)
a) Cho x, y, z và x - y - z = 0
Tính giá trị của biểu thức:
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) Cho x, y, z thỏa mãn: xyz = 1
CMR:
\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xyz+yz+1}=1\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm giá trị lớn nhất của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
(y + z - x)/x = (z + x - y)/y = (x + y - z)/z = 1
--> y + z - x = x; z + x - y = y; x + y - z = z
--> y + z = 2x; z + x = 2y; x + y = 2z
Ta có:
B = (x + y)/y.(y + z)/z.(z + x)/x
= 2z/y.2x/z.2y/x = 8