tìm m đẻ pt x^2-10x+2m+7=0 có ngiệm
vào lớp 10 chúc các bạn hoc gỏi toán nhe. ai học lớp 10 . giải giúp mình bài này nhe.
tìm m đẻ pt có 4 ngiệm: \(x^4-2x^3-\left(2m-1\right)x^2+2\left(m+1\right)x+m^2+m=0^{ }\)
cho pt: \(x^2-\left(2m-1\right)x+m^2-1=0\) (1)
a) tìm điều kiện của m để pt (1) có 2 nghiệm phân biệt
b) tìm m để 2 ngiệm \(x_1\), \(x_2\) của pt (1) t/m: \(\left(x_1-x_2\right)^2=x_1-3x_2\)
giúp mk vs mk cần gấp
a. Phương trình có 2 nghiệm phân biệt khi:
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)=5-4m>0\)
\(\Rightarrow m< \dfrac{5}{4}\)
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m^2-1\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=x_1-3x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=x_1-3x_2\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(m^2-1\right)=x_1-3x_2\)
\(\Leftrightarrow x_1-3x_2=5-4m\)
Kết hợp hệ thức Viet ta được: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1-3x_2=5-4m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\4x_2=6m-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+1}{2}\\x_2=\dfrac{3m-3}{2}\end{matrix}\right.\)
Thế vào \(x_1x_2=m^2-1\)
\(\Rightarrow\left(\dfrac{m+1}{2}\right)\left(\dfrac{3m-3}{2}\right)=m^2-1\)
\(\Leftrightarrow m^2-1=0\Rightarrow m=\pm1\) (thỏa mãn)
\(x^4+\left(1-2m\right)x^2+m^2-1=0\)
Tìm m để pt :a) Vô nghiệm
b)Có 1 ngiệm
c)Có 3 ngiệm
d)Có 4 nghiệm
Cho pt: \(x^2-\left(2m+1\right)x+m^2+2m=0\)
a, tìm các gtri của m để pt có nghiệm lad 1, tìm ngiệm còn lại
b, tim m để pt có 2 nghiệm \(x_1,x_2\)thỏa mãn điều kiện \(x_1^2+x_2^2=8\)
Cho pt: 4x2 + (m2+2m-15)x + (m+1)2-20=0
Tìm tất cả các giá trị của m để pt có 2 ngiệm x1, x2 thoả mãn: x12+x22+2019=0
Không tồn tại giá trị nào của $m$ thỏa mãn, vì $x_1^2+x_2^2+2019\geq 2019>0$ với mọi $m\in\mathbb{R}$
biện luận số ngiệm của pt sau theo m: (mx - m - 1)(|x - 2m| - mx + 2) = 0
Cho phương trình x2 – ( 2m+1)x +m2+1 = 0
Tìm tất cà các giá trị m thuôc Z để pt có 2 ngiệm phân biệt x1;x2 để biểu thức P= (x1.x2)/(x1+x2) có giá trị nguyên
cho pt x^2-(2m+5)x-2m-6=0 tìm m để pt có 2 nghiệm phân biệt thỏa mãn |x1|+|x2|=7
Δ=(2m+5)^2-4(-2m-6)
=4m^2+20m+25+8m+24
=4m^2+28m+49
=(2m+7)^2>=0
Để phương trình có hai nghiệm phân biệt thì 2m+7<>0
=>m<>-7/2
|x1|+|x2|=7
=>x1^2+x2^2+2|x1x2|=49
=>(x1+x2)^2-2x1x2+2|x1x2|=49
=>(2m+5)^2-2(-2m-6)+2|2m+6|=49
=>4m^2+20m+25+4m+12+2|2m+6|=49
=>4m^2+24m-12+4|m+3|=0
TH1: m>=-3
=>4m^2+24m-12+4m+12=0
=>4m^2+28m=0
=>m=0(nhận) hoặc m=-7(loại)
TH2: m<-3
=>4m^2+24m-12-4m-12=0
=>4m^2+20m-24=0
=>m^2+5m-6=0
=>m=-6(nhận) hoặc m=-1(loại)
Cho pt: x^2 - x + m=0 (1)
X^2 - x + 3m = 0 (2)
tìm (m#0) để một trong các ngiệm của pt (2) bằg hai lần một ngiệm của pt (1).