Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:06

a) \({\cos ^2}\frac{\pi }{8} + {\cos ^2}\frac{{3\pi }}{8} = {\cos ^2}\frac{\pi }{8} + {\cos ^2}\left( {\frac{\pi }{2} - \frac{\pi }{8}} \right) = {\cos ^2}\frac{\pi }{8} + {\sin ^2}\frac{\pi }{8} = 1\)

b)

\(\begin{array}{l}\tan {1^ \circ }.\tan {2^ \circ }.\tan {45^ \circ }.\tan {88^ \circ }.\tan {89^ \circ }\\ = (\tan {1^ \circ }.\tan {89^ \circ }).(\tan {2^ \circ }.\tan {88^ \circ }).\tan {45^ \circ }\\ = (\tan {1^ \circ }.\cot {1^ \circ }).(\tan {2^ \circ }.\cot {2^ \circ }).\tan {45^ \circ }\\ = 1\end{array}\)

Thầy Tùng Dương
Xem chi tiết
Nguyễn Xuân Anh
23 tháng 3 2022 lúc 21:12

a) Ta có: \(sin^2x+sin^2\left(90-x\right)=sin^2x+cos^2x=1.\)

áp dụng: A = 2

b)Ta có: \(cos\left(x\right)=-cos\left(180-x\right)\)

áp dụng: B = 0

c) Ta có: \(tan\left(x\right)\cdot tan\left(90-x\right)=\frac{sinx}{cosx}\cdot\frac{sin\left(90-x\right)}{cos\left(90-x\right)}=\frac{sinx}{cosx}\cdot\frac{cosx}{sinx}=1\)

áp dụng: C = 1

Khách vãng lai đã xóa
Nguyễn Hoàng Minh
27 tháng 3 2022 lúc 9:04

quá sai

Khách vãng lai đã xóa
đặng nguyên vũ
28 tháng 3 2022 lúc 20:20

trả dép em về

Khách vãng lai đã xóa
Thầy Tùng Dương
Xem chi tiết
Lê Trần Nguyên Khải
23 tháng 3 2022 lúc 16:08

A=a2sin⁡90∘+b2cos⁡90∘+c2cos⁡180∘

 0 

 

B=3−sin2⁡90∘+2cos2⁡60∘−3tan2⁡45∘.

= 3 - 1 + 1/2 - 3 = -1/2

undefined

Khách vãng lai đã xóa
Lương Bửu An
23 tháng 3 2022 lúc 16:10

What did you see at the zoo?

 I saw crocodiles.

Khách vãng lai đã xóa
Nguyễn Huy Hoàng
23 tháng 3 2022 lúc 16:10

toán mà

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:35

a) \(\cos \frac{{3\pi }}{7} = 0,22252\); \(\tan ( - {37^ \circ }25') = 0,765018\)      

b) \(179^o23'30"\approx3,130975234\left(rad\right)\)

c) \(\frac{{7\pi }}{9} = {140^ \circ }\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:38

Ta có: \(\sin ( - {675^ \circ }) = \sin ({45^ \circ } - {2.360^ \circ }) = \sin {45^ \circ } = \frac{{\sqrt 2 }}{2}\)

\(\tan \frac{{15\pi }}{4} = \tan \left( {3\pi  + \frac{{3\pi }}{4}} \right) = \tan \left( {\pi  + \frac{{3\pi }}{4}} \right) = \tan \left( {\frac{{3\pi }}{4}} \right) = \tan \left( {\pi  - \frac{\pi }{4}} \right) =  - \tan \left( {\frac{\pi }{4}} \right) =  - 1\)

Buddy
Xem chi tiết
Quoc Tran Anh Le
21 tháng 9 2023 lúc 20:44

\(\begin{array}{l}\sin \left( { - \frac{{2\pi }}{3}} \right) =  - \frac{{\sqrt 3 }}{2}\\\tan 495^\circ  =  - 1\end{array}\)

Buddy
Xem chi tiết
Quoc Tran Anh Le
21 tháng 9 2023 lúc 20:44

\(\begin{array}{l}\cos 75^\circ  = \frac{{\sqrt 6  - \sqrt 2 }}{4}\\\tan \left( { - \frac{{19\pi }}{6}} \right) =  - \frac{{\sqrt 3 }}{3}\end{array}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:07

a) \(\tan ( - {75^ \circ }) =  - 2 - \sqrt 3 \)

b) \(\cot \left( { - \frac{\pi }{5}} \right) \approx  - 1,376\)

Buddy
Xem chi tiết
Quoc Tran Anh Le
21 tháng 9 2023 lúc 22:24

a) Điều kiện xác định là: \(x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

Vì tan0 = 0 nên phương trình tanx = 0 có các nghiệm \(x = k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}.\)

Vậy tập nghiệm của phương trình là: \(S = \{ k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{*{20}{l}}{b){\rm{ }}tan\left( {30^\circ -3x} \right) = tan75^\circ }\\{ \Leftrightarrow \;tan\left( {3x-30^\circ } \right) = tan\left( {-{\rm{ }}75^\circ } \right)}\\{ \Leftrightarrow \;3x-30^\circ  = -75^\circ  + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;3x = -\,45^\circ  + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;x = -15^\circ  + k120^\circ ,k\; \in \;\mathbb{Z}.}\end{array}\)

Vậy tập nghiệm của phương trình là: \(S = \{ -15^\circ  + k120^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{l}{\rm{c, cos}}\left( {x + \frac{\pi }{{12}}} \right) = {\rm{cos}}\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi \\x + \frac{\pi }{{12}} =  - \frac{{3\pi }}{{12}} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x =  - \frac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{\pi }{6} + k2\pi ; - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}} \right\}\)