Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Name No
Xem chi tiết
Nguyễn Thị Lý lớp 9a1
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2023 lúc 23:34

a: A,E,D,B cùng thuộc (O)

=>AEDB nội tiếp

A,E,C,B cùng thuộc (O)

=>AECB nội tiếp

B,E,C,D cùng thuộc (O)

=>BECD nội tiếp

góc AHB=góc AKB=90 độ

=>AKHB nội tiếp

b: Đề sai rồi bạn

Trần Việt Hoàng
Xem chi tiết
Arima Kousei
29 tháng 5 2018 lúc 20:38

a) Ta có  \(\widehat{AHB}=90^o\)

Theo tính chất góc ngoài của tam giác, ta có:

\(\widehat{IAB}=\widehat{AHB}+\widehat{HBA}=90^o+\widehat{HBA}=\widehat{EBA}+\widehat{HBA}=\widehat{CBE}\)

Xét tam giác ABI và tam giác BEC có:

AI = BC (gt)

BA = EB (gt)

\(\widehat{IAB}=\widehat{CBE}\)  (cmt)

\(\Rightarrow\Delta ABI=\Delta BEC\left(c-g-c\right)\)

b) Do \(\Delta ABI=\Delta BEC\Rightarrow BI=EC\)

Gọi giao điểm của EC với AB và BI lần lượt là J và K.

Do \(\Delta ABI=\Delta BEC\Rightarrow\widehat{KBJ}=\widehat{BEK}\)

Vậy thì \(\widehat{KBJ}+\widehat{KJB}=\widehat{BEK}+\widehat{KJB}=90^o\)

Suy ra \(\widehat{BKJ}=90^o\) hay \(BI\perp CE\)

c) Chứng minh hoàn toàn tương tự ta có \(IC\perp BF\)

Gọi giao điểm của IC và BF là T.

Xét tam giác IBC có IH, CK, BT là các đường cao nên chúng đồng quy tại một điểm.

Vậy AH, EC, BF đồng quy tại một điểm.

Phương Trình Hai Ẩn
29 tháng 5 2018 lúc 20:30

Vẽ hình đi bạn

Rồi mình giúp bạn làm

Vẽ hình xong gửi tin nhắn cho mình

:) Chúc bạn học tôt 

@@

Arima Kousei
29 tháng 5 2018 lúc 20:34

Hình vẽ : 

~ Ủng hộ nhé 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 5 2019 lúc 8:16

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì  ∆ ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phí Quỳnh Anh
Xem chi tiết
Maths is My Life
7 tháng 8 2017 lúc 12:43

a) Tam giác ABI và BEC có: AI = BC, \(\widehat{BAI}=\widehat{EBC}\left(=90^o+\widehat{ABH}\right)\), AB = BE

\(\Rightarrow\Delta ABI=\Delta BEC\left(c.g.c\right)\)

b) Từ câu a => BI = CE và \(\widehat{ABI}=\widehat{BEC}\Rightarrow\widehat{ABI}+\widehat{EBI}=\widehat{BEC}+\widehat{EBI}=90^o\Rightarrow BI⊥CE\)

c) Chứng minh tương tự ta được \(CI⊥BF\)

Xét tam giác BIC có AH, CE, BF là ba đường cao nên đồng quy tại một điểm.

Cô Hoàng Huyền
28 tháng 2 2018 lúc 15:40

Em tham khảo tại đây nhé.

Câu hỏi của Đức Tạ - Toán lớp 7 - Học toán với OnlineMath

Nguyễn Thu Thủy
Xem chi tiết
pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 2 2023 lúc 0:11

a,b: Xét ΔOIB vuông tạiI và ΔOKC vuông tại K có

góc IOB=góc KOC

=>ΔOIB đồng dạng vơi ΔOKC

=>OI/OK=OB/OC

=>OI*OC=OK*OB

c: Xét ΔBOH vuông tại H và ΔBCK vuông tại K có

góc OBH chung

=>ΔBOH đồng dạng với ΔBCK

d: Xét ΔCHO vuông tại H và ΔCIB vuông tại I có

góc HCO chung

=>ΔCHO đồng dạng với ΔCIB

=>CH/CI=CO/CB

=>CH*CB=CI*CO

ΔBOH đồng dạng với ΔBCK

=>BO/BC=BH/BK

=>BO*BK=BH*BC

BO*BK+CO*CI=BH*BC+CH*BC=BC^2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2018 lúc 7:29

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì  ∆ ABC là tam giác nhọn nên ba đường cao cắt nhau tại điểm H nằm trong tam giác ABC.

Tứ giác BIHL nội tiếp.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tứ giác CIHK nội tiếp.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Từ (1), (2) suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ý Nhi
Xem chi tiết
Nguyễn Như Nam
22 tháng 5 2016 lúc 21:46

Toán lớp 7

a) Từ E kẻ đường thẳng vuông góc với BC cắt BC tại M.

Ta có: \(\widehat{EBM}+90^o+\widehat{ABH}=180^o\)

=> \(\widehat{EBM}+\widehat{ABH}=90^o\) (1)

Mặt khác, trong tam giác BAH vuông tại H, có: \(\widehat{BAH}+\widehat{ABH}=90^o\) (2)

Từ 1 và 2 => \(\widehat{EBM}=\widehat{BAH}\) => \(180^o-\widehat{EBM}=180^o-\widehat{BAH}=>\widehat{EBC}=\widehat{BAI}\)

Xét tam giác EBC và tam giác BAI, có:

EB=AB

\(\widehat{EBC}=\widehat{BAI}\)

BC=AI

=> \(\Delta EBC=\Delta BAI\left(c.g.c\right)\)=> \(\widehat{PIQ}=\widehat{QCH}\)(góc tương ứng)

b) Do tam giác EBC= tam giác BAI nên BI=EC( cạnh tương ứng)

*) Trong tam giác IPQ có: \(\widehat{PIQ}+\widehat{IOP}+\widehat{IPQ}=180^o\)(3)

*) Trong tam giác QHC có: \(\widehat{HQC}+\widehat{QCH}+\widehat{CHQ}=180^o\) (4)

=> \(\widehat{PIQ}+\widehat{IOP}+\widehat{IPQ}=\)\(\widehat{HQC}+\widehat{QCH}+\widehat{CHQ}\)

Mà : \(\widehat{PIQ}=\widehat{QCH}\)

\(\widehat{IOP}=\widehat{HQC}\) (góc đối đỉnh)

=> \(\widehat{IPQ}=\widehat{CHQ}=90^o\)

Vậy IB vuông góc với EC và cắt nhau tại P.c) Nối I với C. điểm giao nhau của IC và BF là TTương tự câu a và câu b thì IC cũng vuông góc BFTrong tam giác IBC thì có: 3 đường cao là: IH;CP;BT => 3 cạnh này cắt nhau tại 1 điểm => Ba đường thẳng AH , CE , BF đồng quy