Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Đăng Khôi
Xem chi tiết
Đào Đăng Khôi
Xem chi tiết
nyan cat
Xem chi tiết
Dang Tung
19 tháng 8 2023 lúc 16:33

Ta thấy : \(\left|x-2021\right|\ge0\forall x,\left|y-2022\right|\ge0\forall y\\ =>\left|x-2021\right|+\left|y-2022\right|\ge0\)

Mà theo đề : \(\left|x-2021\right|+\left|y-2022\right|\le0\)

=> \(\left\{{}\begin{matrix}x-2021=0\\y-2022=0\end{matrix}\right.=>\left(x;y\right)=\left(2021;2022\right)\)

Thuyết Minh
Xem chi tiết
witch roses
Xem chi tiết
Hẹn Yêu Nơi Phố Cũ
30 tháng 12 2015 lúc 18:03

tick mk nha các bn ơi

Nao Tomori
30 tháng 12 2015 lúc 18:05

xạo vừa vừa thôi mấy mắm ơi, chtt đâu có đâu

Game Good
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 9:38

\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)

Vậy ...

Lấp La Lấp Lánh
12 tháng 11 2021 lúc 9:42

ĐKXĐ: \(3\ge x\ge1\)

Áp dụng BĐT Bunhiacopski:

\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)

Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)

Nên để thõa mãn yêu cầu bài toán thì

\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)

missing you =
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 5 2021 lúc 22:19

\(P=\dfrac{1}{2021}\left(\dfrac{2021^2}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{2021}.\dfrac{\left(2021+1\right)^2}{x+y}=\dfrac{1}{2021}.\dfrac{2022^2}{\dfrac{2022}{2021}}=2022\)

\(P_{min}=2022\) khi \(\left(x;y\right)=\left(1;\dfrac{1}{2021}\right)\)

Nguyễn Thái Hoàng Anh
Xem chi tiết
Đặng Ngọc Quỳnh
25 tháng 12 2020 lúc 19:30

\(\Rightarrow2019\left|x-1\right|+2020\left|y-2\right|+2021\left|y-3\right|+2022\left|y-4\right|=2020+2022\)

\(\Rightarrow\hept{\begin{cases}\left|y-2\right|=1\\\left|x-1\right|=0\\\left|y-4\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)

Khách vãng lai đã xóa
đặng sĩ nguyên
Xem chi tiết
Nguyễn Minh Quang
23 tháng 10 2021 lúc 11:16

ta có :

undefined

Khách vãng lai đã xóa
đặng sĩ nguyên
23 tháng 10 2021 lúc 11:56

2022 mà bạn

Khách vãng lai đã xóa