Cho đa thức \(P(x) = {x^2} - 3x + 2\). Tính P(1), P(2).
cho đa thức p(x)= -3x^2+x+7/4 và Q(x)= -3x^2+2x-2 a, Tính P(-1) và P(-1/2) b, tìm nghiệm của đa thức P(x)-Q(x)
a) _P(-1)= -3.(-1)^2 + (-1) + 7/4
= -3+(-1)+1,75
=-4+1,75
=-2,25
_P(-1/2)=-3.(-1/2)^2+(-1/2)+7/4
=-3.1/4+(-1/2)+7/4
=-3/4+(-2/4)+7/4
=-5/4+7/4
=2/4=1/2
b) P(x)=-3x^2+x+7/4
-
Q(x)=-3x^2+2x-2
P(x)-Q(x)= -x+3,75
Xet -x+3,75=0
-x =0-3,75
-x =-3,75
=> x =3,75
Vay nghiem cua da thuc P(x)-Q(x) la:3,75
Cho hai đa thức P(x)=\(2x^2-3x^3+x^2+3x^3-x-1-3x\); Q(x)=\(-3x^2+2x^3-x-2x^3-3x-2\) . a) Thu gọc và sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến. b) tính f(x)= P(x) - Q(x).Tính g(x)= P(x) - Q(x), tìm x để đa thức g(x) - (6x+1)=0
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
Bài 3 :
Cho đa thức :
f(x) = 9x^3 - 1/3x + 3x^2 - 3x + 1/3x^2 - 1/9x^3 - 3x^2 - 9x + 27 + 3x
a, Thu gọn đa thức f(x)
b, Tính f(3) , f(-3)
Bài 4
Cho đa thức :
F(x) = 2x^6 + 3x^2 + 5x^3 - 2x^2 + 4x^4 - x^3 + 1 - 4x^3 - x^4
a, Thu gọn đa thức f(x)
b, Tính f(1) , f(-1)
c, Chứng minh đa thức f(x) không có nghiệm
- Giúp mình với
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0
Cho 2 đa thức : P = 3x^3 - 3x^2 + 8x - 5 và Q = 5x^2 - 3x +2 .
A. Tính P + Q .
B. Tính P - Q .
C. Tính Q - P .
Cho 2 đa thức : P = x^4 - x^3 + x^2 + 3x và Q = 2x^4 - 9x^2 - 5 .
A. Tính P + Q .
B. Tính P - Q .
C. Tính Q - P .
Cho 2 đa thức : P = 2x^2y + 9 xy^2 - 7y^3 và Q = 8x^2y + xy^2 .
A. Tính P + Q .
B. Tính P - Q .
C. Tính Q - P .
Tìm đa thức A biết :
A. 2A + ( 2x^2 + y^2 ) = 6x^2 - 5y^2 - 2x^2y^2 .
B. 2A - ( xy + 3x^2 - 2y^2 ) = x^2 - 8x^2 + xy.
mik đang cần gấp
Cho đa thức:
f(x)= ( x^2 - 3x +2)^ 2015 + (x^2 + x - 2) + 1
Tính tổng các hệ số của đa thức f(x)
Thay x=1 bằng tổng các hệ số của f(x)
Ta có f(1)=(1-3+2)^2015+(1+1-2)+1=1. Vậy tổng các hệ số của f(x) là 1
Bài 1: Cho 2 đơn thức: A= 1/2.x^3.y^2.z^4 và B= -2.x.y^3.z
a) Tính tích 2 đơn thức rồi tìm bậc, nêu phần hệ số, phần biến số của đơn thức.
b) Tính giá trị của a,b với x=-1, y=1, z=2.
Bài 2: Cho đa thức:
A=-1/2.x-3x^2+4xy-x+2x^2-4xy.
a) Thu gọn đa thức A
b) Tìm bậc của đa thức A
c) Tính giá trị của a với x=-2, y=1000
d) Tìm nghiệm cuart đa thức A
Bài 3: Tìm đa thức P biết:
a) P+( x^3-3x^2+5)=9x^2-2+3x^3 )
b)( xy-x^2-y^2 )-P=( 5x^2+xy-y^2 )
c)P-( 5x^5-3x^4+4x^2-1/2 )=x^4-5x^5-x^2-1
Cho đa thức : x^3+2x^2y+3x^2+3y^2-3x^2
a, thu gọn
b, tính giá của đa thức tại x=1, y=2
\(a,x^3+2x^2y+3x^2+3y^2-3x^2\)
\(=x^3+2x^2y+3y^2\)
\(b,\)Thay x = 1, y = 2 vào đa thức x3 + 2x2y + 3y2 ta được:
\(1^3+2.1^2.2+3.2^2\)
\(=1+4+12\)
\(=17\)
Vậy giá trị của đa thức tại x = 1, y = 2 là 17
1)thực hiện phép chia đa thức x^3+3x^2+3 cho đa thức x^3+1
2)tìm số a để đa thức x^3+3x^2+3x+a chia hết cho đa thức x+2
Bài 1.
3x2 + 2 có bậc thấp hơn x3 + 1 nên không thể chia tiếp
Vậy x3 + 3x2 + 3 = 1( x3 + 1 ) + 3x2 + 2
Bài 2.
Ta có : x3 + 3x2 + 3x + a có bậc là 3
x + 2 có bậc là 1
=> Thương bậc 2
lại có hệ số cao nhất của đa thức bị chia là 1
Đặt đa thức thương là x2 + bx + c
khi đó : x3 + 3x2 + 3x + a chia hết cho x + 2
<=> x3 + 3x2 + 3x + a = ( x + 2 )( x2 + bx + c )
<=> x3 + 3x2 + 3x + a = x3 + bx2 + cx + 2x2 + 2bx + 2c
<=> x3 + 3x2 + 3x + a = x3 + ( b + 2 )x2 + ( c + 2b )x + 2c
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}b+2=3\\c+2b=3\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=1\\a=2\end{cases}}\Rightarrow a=2\)
Vậy a = 2
Cho các đa thức P(x) = 2x^2 - 3x -4. Q(x) = x^2 - 3x + 5 a) Tính giá trị của đa thức P(x) tại x =1 b) Tìm H(x) =P(x) - Q(x) c)Tìm nghiệm của đa thức H(x)
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
cho hai đa thức:
f(x)=-x+2x^2-1/2+3x^5+5 và g(x)=3-x^5+1/3x^3+3x-2x^5-2x^2-1/3x^3
a)thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm dần của biến
b) Tính f(x)+g(x)
c) Tìm ngiệm của đa thức
h(x)=f(x)+g(x)