Tìm n để n4+3n3+9n2 +13n+6 là số chính phương
chứng minh rằng: n4+3n3+4n2+3n+1 không là số chính phương với mọi số tự nhiên n khác 0
Lời giải:
$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$
Nếu đây là scp thì $n^2+n+1$ cũng phải là scp
Đặt $n^2+n+1=t^2$ với $t$ tự nhiên
$\Leftrightarrow 4n^2+4n+4=(2t)^2$
$\Leftrightarrow (2n+1)^2+3=(2t)^2$
$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$
$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$
$\Rightarrow n=0$ (trái giả thiết)
Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$
$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$
Ta có đpcm.
Tìm n thuộc Z để n4 + 8n3 + 17n2 + 4n + 6 là số chính phương.
+)Đặt A = n4+8n3+17n2+4n+6
=> A= (n2+4n)2+(n+2)2+2>0
=> A> (n2+4n)2
+)Xét với n = 0 => A= 6 (không thỏa mãn)
Xét hiệu B=(n2+4n+1)2-A
=n4+16n2+1+8n3+2n2+8n-n4-8n3-17n2-4n-6
=n2+4n-5
=(n+2)2-9
TH1:B≤0 <=> -5≤n≤1 hay n∈{-5,-4,-3,-2,-1,1} vì n khác 0(cmt)
ta có A=(n2+4n)2+(n+2)2+2= n2(n+4)2+(n+2)2+2
Vì A là số chính phương nên A≡ 0,1(mod4)và A≡0,1,4(mod 5)
Ta xét với n≡0 (mod 4)=> A≡0+4+2≡2 (mod4) => loại
n≡ 1 (mod 4)=> A≡ 25+ 9+2≡0 (mod4) => chọn
cmtt với n≡3(mod 4)=>A≡0(mod 4)=> chọn
n≡ 2(mod 4) => A≡2(mod4) => loại
Ta xét tiếp với mod 5 với n≡ 0,1,2,3,4 thì chỉ có n≡ 0,1 thỏa mãn
=> n ∈{-5,1}
Từ đây ta thay với n= -5 hay 1 thì (n+2)2-9=0
=>B=0 và A=(n2+4n+1)2
=> n∈{1,-5}
TH2: B>0=> (n2+4n)<A<(n2+4n+1)2
=> không tồn tại số chính phương A
Vậy để n4 + 8n3 + 17n2 + 4n + 6 là số chính phương thì n∈{1,-5}
Tìm n để : 13n +3 là số chính phương
Đặt\(13+3=y^2\left(y\in N\right)\)\(\Rightarrow13\left(n-1\right)=y^2-16\Leftrightarrow13\left(n-1\right)\left(y+4\right)\left(y-4\right)\)
\(\Rightarrow\left(y+4\right)\left(y-4\right)\)chia hết cho 13 mà 13 là số nguyên tố nên \(\left(y+4\right)\)chia hết cho 13 hoặc (y-4) chia hết cho 13
=> \(y=13k+-4\left(k\in N\right)\)
\(\Rightarrow13\left(n-1\right)=\left(13k+-4\right)^2-16=13k\left(13k+-8\right)\)
\(\Rightarrow13k^2+-8k+1\)
Vậy \(n=13k^2+-8k+1\left(k\in N\right)\)thì \(13n+3\)là số chính phương.
1+1=22222222222222 1^*(6₫3&&
Mình không biết câu dưới
Tìm n để 13n+3 là số chính phương?
câu này đăng lâu rồi nhưng chưa có câu trả lời nào đúng nhất nhỉ! Vậy thì đây nhé.Trích nguồn từ thi học sinh giỏi 8
13n+3=k^2
=) 13n-13+16=k^2
=) 13(n-1)=k^2-16=(k-4).(k+4)
=) k-4 hoặc k+4 sẽ chia hết cho 13
hay k = 13k +- 4 . Chỗ này là 13k-4 hoặc 13k+4 nhé. Ghi cả +- vào ( cộng trên,trừ dưới )
Vậy thay k vào sẽ có luôn :
13(n-1)=13k(13k+-8) =) n-1=k.(13k+-8) = 13k^2+-8k
=) n = 13k^2 +- 8k ( n đc viết dưới dạng như vậy )
Vậy bất kì n có dạng như trên thì 13n+3 là số chính phương nhé
tìm n để ;13n+3 là số chính phương
Tìm n để 13n+3 là số chính phương?
tìm số tự nhiên n để 13n+3 là số chính phương
chết nhầm, số chính phương mà mk nhầm là số nguyên tố!!!! hhi, xl ha!
tìm số tự nhiên n biết 13n+3= số chính phương
tìm số tự nhiên n để n-1; n5+n4+n3+13n2+13n+14 là số chính phương
tập hợp các số nguyên n để n^4+3n^3 +9n^2+13n +6 là số chính phương