Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Trâm
Xem chi tiết
Nguyễn Huy Tú
13 tháng 7 2021 lúc 19:32

undefined

le ngoc tra my
Xem chi tiết
Bruh
Xem chi tiết
missing you =
10 tháng 8 2021 lúc 17:14

a,

pytago trong tam giác ABH

\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)

dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)

pytago cho tam giác ABC

\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)

\(=>HC=BC-HB=8cm\)

b, pytago cho tam giác AHB

\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)

rồi tính AC , CH làm tương tự bài trên

Bảo Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 21:40

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)

Phạm Nguyễn Thúy Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

CFM,LQ Đoàn
Xem chi tiết
CFM,LQ Đoàn
8 tháng 8 2019 lúc 14:18

mọi người giúp mình với

Vương Chí Bình
8 tháng 8 2019 lúc 14:32

vì BH=9 , HC=16

=> BC=25

xét tam giác ABC ...., ta có

BC^2=CA^2+AB^2

hay 25^2=20^2 +Ab^2

625=400 + AB^2

AB^2=225

AB=15

xét tam giác ABH...., ta có

AB^2=AH^2 + BH^2

hay 15^2= Ah^2 + 9^2

225= AH^2 +81

AH^2= 144

AH=12

thêm kl và những chỗ còn thiếu vào nhé

CFM,LQ Đoàn
Xem chi tiết
Kiệt Nguyễn
8 tháng 8 2019 lúc 15:40

Ta có: \(BC=BH+CH=9+16=25\)

Áp dụng định lý Py-  ta - go vào \(\Delta ABC\), ta được:

   \(AB^2=BC^2-AC^2\)

\(\Leftrightarrow AB^2=25^2-20^2\)

\(\Leftrightarrow AB^2=625-400\)

\(\Leftrightarrow AB^2=225\)

\(\Leftrightarrow AB=\sqrt{225}=15\)

Áp dụng định lý Py-  ta - go vào \(\Delta AHC\), ta được:

   \(AH^2=AC^2-CH^2\)

\(\Leftrightarrow AH^2=20^2-16^2\)

\(\Leftrightarrow AH^2=400-256\)

\(\Leftrightarrow AH^2=144\)

\(\Leftrightarrow AH=\sqrt{144}=12\)

Bài làm

BC=BH+HC=9+6=25(cm)BC=BH+HC=9+6=25(cm)

Áp dụng định lý Py-ta-go với tam giác ABC vuông tại A, ta có:

BC2=AB2+AC2BC2=AB2+AC2

⇒AB2=BC2+AC2=252−202⇒AB2=BC2+AC2=252−202

=625−400=225=152=625−400=225=152

Vậy AB=15cm

Áp dụng định lý Py-ta-go với tam giác AHC vuông tại H, ta có:
AH2=AC2−HC2=202−162=122AH2=AC2−HC2=202−162=122

Vậy AH= 12cm

# Học tốt #

Bài làm

~ Vừa rồi mik viết thiếu mũ nhá. ~
 

Ta có : BC = BH + HC = 9 + 16 = 25 (cm)

Tam giác ABC vuông tại A nên :

BC2 = AB2 + AC2

252 = AB2 + 162

=> AB2 = 252 - 202

AB2 = 625 - 400 = 225 = 152

=> AB = 15 (cm)

Tam giác AHC vuông tại H nên :

AC2 = AH2 + HC2

202 = AH2 + 162

=> AH2 = 202 - 162

AH = 400 - 256 = 144 = 122

=> AH = 12 (cm)

Vậy AB = 15 cm ; AH = 12 cm

# Học tốt #

Lê Minh Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 21:45

f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH+CH=25

hay BH=25-CH(2)

Thay (2) vào (1), ta được:

\(HC\left(25-HC\right)=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)

nguyễn hà phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 5 2023 lúc 13:52

a: AB=căn 4,5*12,5=7,5cm

AC=căn 8*12,5=10cm

b: HB=(13+5)/2=9cm

HC=13-9=4cm

AB=căn 9*13=3 căn 13cm

AC=căn 4*13=2căn 13cm