Tìm GTNN của: 5-\(\sqrt{X^2-6X+14}\)
Tìm GTNN của:
a) x-căn x
b) 5-\(\sqrt{X^2-6X+14}\)
a)\(x-\sqrt{x}=x-2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra khi x=1/4
b) câu này là max chứ, hay vẫn min?
tìm GTNN của biểu thức
B=7-\(\sqrt{x2-6x+11}\)
\(B=7-\sqrt{x^2-6x+11}=7-\sqrt{\left(x-3\right)^2+2}\)
Vì \(\sqrt{\left(x-3\right)^2+2}\ge\sqrt{2}\Leftrightarrow B\le7-2=5\)
Vậy \(B_{max}=5\Leftrightarrow x=3\)
c3: cho x+y=15, tìm giá tị nhỏ nhất , lớn nhất của biểu thức:
B=căn (x-4) + căn (y-3)
c4: tìm GTNN của biểu thức A= (2x^2 - 6x + 5) / 2x
c5: cho a, b, x là những số dương. tìm GTNN của :
P= [(x+a)(x+b)]/x
C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)
Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)
Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...
C4 : Bạn cần thêm điều kiện x là số dương nhé : )
Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy :
\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)
Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :)
\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)
Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)
Vậy .......
tìm gtnn của biểu thức P=x^3-3x+5 và Q=2x^2+y^2-2xy-6x+2y+2022
Cho biếu thức : P = \(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn P
b) Tính giá trị của P với x = 14 - \(6\sqrt{5}\)
c) Tìm GTNN của P
P = \(\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{3\left(3\sqrt{x}-5\right)}{x-2\sqrt{x}-3}\)
a) Rút gọn
b) Tìm giá trị của P khi x=\(4+2\sqrt{3}\)
c) Tìm GTNN của P
d) Tìm x khi P>3
hình như đề bài bị sai số thì phải bạn ạ
mình giải cứ bị lệch số ấy
Tìm GTNN hoặc GTLN (nếu có) của:
a) A = \(\sqrt{x^2-2x+5}\)
b) B = 5 - \(\sqrt{x^2-6x+14}\)
a) \(A=\sqrt[]{x^2-2x+5}\)
\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)
\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)
mà \(\left(x+1\right)^2\ge0,\forall x\in R\)
\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)
Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)
Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)
b) \(B=5-\sqrt[]{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)
Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)
\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)
\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)
Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)
Tìm GTLN, GTNN của biểu thức \(A=2x+\sqrt{5-x^2}\)
Bấm nhầm nút gửi
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\sqrt{5}\le x\le\sqrt{5}\\A\ge2x\end{cases}}\)
\(\Rightarrow A\ge-2\sqrt{5}\) (1)
Bình phương 2 vế ta được
\(5x^2-4Ax+A^2-5=0\)
Để phương trình theo x có nghiệm thì
\(\Delta'=\left(2A\right)^2-4.\left(A^2-5\right).5\ge0\)
\(\Leftrightarrow100-16A^2\ge0\)
\(\Leftrightarrow A\le\frac{5}{2}\)(2)
Từ (1) và (2) \(\Rightarrow-2\sqrt{5}\le A\le\frac{5}{2}\)
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
tìm GTNN , GTLN của
\(M=2x+\sqrt{5-x^2}\)
Để M xác định thì \(x^2\le5\Leftrightarrow-\sqrt{5}\le x\le\sqrt{5}\)
Ta có : \(M^2=\left(2.x+1.\sqrt{5-x^2}\right)^2\le\left(2^2+1^2\right)\left(x^2+5-x^2\right)=25\)
\(\Rightarrow-5\le M\le5\)
+) Max M = 5 <=> \(\hept{\begin{cases}\frac{x}{\sqrt{5-x^2}}=2\\-\sqrt{5}\le x\le\sqrt{5}\end{cases}}\) \(\Leftrightarrow x=2\)
Mặt khác : từ điều kiện xác định ta có \(x\ge-\sqrt{5}\)
\(\Rightarrow\sqrt{5-x^2}\ge0\) \(\Rightarrow M\ge-2\sqrt{5}\)
Dấu "=" xảy ra khi \(x=-\sqrt{5}\)
Vậy Min M = \(-2\sqrt{5}\) \(\Leftrightarrow x=-\sqrt{5}\)