Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
helpmeplsss
Xem chi tiết
⭐Hannie⭐
8 tháng 9 2023 lúc 21:46

`a, Q?`

b,`

 \(B=\dfrac{x^2+4}{x^2-4}-\dfrac{2}{x-2}\\ =\dfrac{x^2+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}\\ =\dfrac{x^2+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2+4-2x-4}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x}{x+2}\left(dpcm\right)\)

`c,` Ta có `A-B<3/2`

\(\Rightarrow\dfrac{3x}{x+2}-\dfrac{x}{x+2}< \dfrac{3}{2}\\ \Leftrightarrow\dfrac{3x-x}{x+2}< \dfrac{3}{2}\\ \Leftrightarrow\dfrac{2\left(3x-x\right)}{2\left(x+2\right)}< \dfrac{3\left(x+2\right)}{2\left(x+2\right)}\\ \Leftrightarrow6x-2x< 3x+6\\\Leftrightarrow6x-2x-3x< 6\\ \Leftrightarrow x< 6 \)

Mà `x >= -2`

`->`Số dương lớn nhất thoả mãn là `5`

 

helpmeplsss
8 tháng 9 2023 lúc 21:39

bổ sung câu hỏi

c) Với x > -2, tìm số nguyên dương x lớn nhất thỏa mãn A - B < \(\dfrac{3}{2}\)

Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 21:41

a: Khi x=9 thì \(A=\dfrac{3\cdot9}{9+2}=\dfrac{27}{11}\)

b: \(B=\dfrac{x^2+4-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)

c: A-B<3/2

=>\(\dfrac{2x}{x+2}-\dfrac{3}{2}< 0\)

=>\(\dfrac{4x-3x-6}{2\left(x+2\right)}< 0\)

=>\(\dfrac{x-6}{x+2}< 0\)

=>-2<x<6

mà x>-2

nên số nguyên dương x lớn nhất thỏa mãn là x=5

Ngoc Anh Thai
Xem chi tiết
Hoàng Ngọc Quang Minh
19 tháng 4 2021 lúc 20:14

tick cho em la em lam lien

My Nguyen Tra
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 21:37

a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

Nguyễn Hoàng Khải
5 tháng 1 2023 lúc 10:16

a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)

Có vài bước mình làm tắc á nha :>

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 7:53

\(a,A=\dfrac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{1}{3x+2}\\ b,B=\dfrac{1}{2}+\dfrac{x}{\dfrac{x+2-x}{x+2}}=\dfrac{1}{2}+\dfrac{x}{\dfrac{2}{x+2}}=\dfrac{1}{2}+\dfrac{x\left(x+2\right)}{2}\\ B=\dfrac{1+x^2+2x}{2}=\dfrac{\left(x+1\right)^2}{2}\)

Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 7:18

\(a,\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(l\right)\\x=-2\left(l\right)\end{matrix}\right.\Leftrightarrow x\in\varnothing\Leftrightarrow A\in\varnothing\\ b,\text{ý bạn là rút gọn A hả?}\\ A=\dfrac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x+4}{\left(x-2\right)\left(x+2\right)}\)

Toru
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 20:28

a: \(A=\left(\dfrac{2x^2+2}{x^3-1}+\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+3}{x^3-x^2+3x-3}\right):\dfrac{1}{x-1}\)

\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{x^4+2x^2+1-x^2}-\dfrac{x^2+3}{x^2\left(x-1\right)+3\left(x-1\right)}\right)\cdot\dfrac{x-1}{1}\)

\(=\left(\dfrac{2x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x^2-x+1\right)}{\left(x^2+1\right)^2-x^2}-\dfrac{x^2+3}{\left(x-1\right)\left(x^2+3\right)}\right)\cdot\dfrac{x-1}{1}\)

\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2-x+1}{\left(x^2+1+x\right)\left(x^2+1-x\right)}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)

\(=\left(\dfrac{2x^2+3}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x^2+x+1}-\dfrac{1}{x-1}\right)\cdot\dfrac{x-1}{1}\)

\(=\dfrac{2x^2+3+x-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x-1}{1}\)

\(=\dfrac{x^2+1}{x^2+x+1}\)

b: Để A là số nguyên thì \(x^2+1⋮x^2+x+1\)

=>\(x^2+x+1-x⋮x^2+x+1\)

=>\(x⋮x^2+x+1\)

=>\(x^2+x⋮x^2+x+1\)

=>\(x^2+x+1-1⋮x^2+x+1\)

=>\(-1⋮x^2+x+1\)

=>\(x^2+x+1\in\left\{1;-1\right\}\)

=>\(x^2+x+1=1\)

=>x2+x=0

=>x(x+1)=0

=>\(x\in\left\{0;-1\right\}\)

 

Mina Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 9:26

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4

Kim Khánh Linh
Xem chi tiết
Kim Khánh Linh
Xem chi tiết