Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết

a) Ta có: \(\Delta ABC \backsim \Delta MNP\) suy ra \(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}}\,\,\left( 1 \right)\) và \(\widehat B = \widehat N\)

Mà D là trung điểm BC và Q là trung điểm NP nên \(BC = 2BD\) và \(NP = 2NQ\)

Thay vào biểu thức (1) ta được \(\frac{{AB}}{{MN}} = \frac{{2BD}}{{2NQ}} \Rightarrow \frac{{AB}}{{MN}} = \frac{{BD}}{{NQ}}\)

Xét tam giác ABD và tam giác MNQ có:

\(\frac{{AB}}{{MN}} = \frac{{BD}}{{NQ}}\) và \(\widehat B = \widehat N\)

\( \Rightarrow \Delta ABD \backsim \Delta MNQ\) (c-g-c)

b) Vì \(\Delta ABD \backsim \Delta MNQ\) nên ta có \(\frac{{AB}}{{MN}} = \frac{{AD}}{{MQ}}\,\,\left( 2 \right)\) và \(\widehat {BAD} = \widehat {NMQ}\) hay \(\widehat {BAG} = \widehat {NMK}\)

Mà G và K lần lượt là trọng tâm của tam giác ABC và tam giác MNP nên \(AD = \frac{3}{2}AG\) và \(MQ = \frac{3}{2}MK\).

Thay vào (2) ta được: \(\frac{{AB}}{{MN}} = \frac{{\frac{3}{2}AG}}{{\frac{3}{2}MK}} \Rightarrow \frac{{AB}}{{MN}} = \frac{{AG}}{{MK}}\)

Xét tam giác ABG và tam giác NMK có:

\(\frac{{AB}}{{MN}} = \frac{{AG}}{{MK}}\) và \(\widehat {BAG} = \widehat {NMK}\)

\( \Rightarrow \)\(\Delta ABG \backsim \Delta MNK\) (c-g-c)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
10 tháng 9 2023 lúc 1:10

Khẳng định d) là khẳng định không đúng 

=> ΔACB \(\backsim\) ΔMPN

Buddy
Xem chi tiết

Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 50^\circ  + 60^\circ  + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 70^\circ \end{array}\)

Xét tam giác ABC và tam giác MNP có:

\(\begin{array}{l}\widehat B = \widehat N = 60^\circ \\\widehat C = \widehat P = 70^\circ \end{array}\)

\( \Rightarrow \Delta ABC \backsim \Delta MNP\) (g-g).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 16:44

a) Xét tam giác \(ABE\) có:

\(AB//CD\) và \(C,D\) cắt \(BE;AE\) lần lượt tại \(C,D\).

Do đó, \(\Delta AEB\backsim\Delta DEC\) (định lí)

b) Vì \(\Delta AEB\backsim\Delta DEC\) nên \(\frac{{AE}}{{ED}} = \frac{{AB}}{{CD}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Thay số ta được:

\(\frac{{x - 2}}{{10}} = \frac{3}{5} \Rightarrow x - 2 = \frac{{10.3}}{5} = 6 \Rightarrow x = 6 + 2 = 8\)

Vậy \(x = 8\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 20:26

Đáp án đúng là A

Vì \(\Delta ABC\backsim\Delta MNP\) theo tỉ số \(k = 3\) nên \(\Delta MNP\backsim\Delta ABC\) theo tỉ số \(\frac{1}{3}\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 16:55

a) Vì \(MN//BC\) nên \(\widehat {MNB} = \widehat {ABC}\) (hai góc so le trong)

Vì \(MB//AC\) nên \(\widehat {MNB} = \widehat {ABC}\) (hai góc so le trong)

Xét tam giác \(BNM\) tam giác \(ABC\) ta có:

\(\widehat {MNB} = \widehat {ABC}\) (chứng minh trên)

\(\widehat {MNB} = \widehat {ABC}\) (chứng minh trên)

Do đó, \(\Delta BNM\backsim\Delta ABC\) (g.g)

b) Vì \(\Delta BNM\backsim\Delta ABC\) nên \(\widehat M = \widehat C = 48^\circ \) (hai góc tương ứng).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 16:50

a) Xét tam giác \(A'B'C'\) ta có:

\(\widehat {A'} + \widehat {B'} + \widehat {C'} = 180^\circ \)

Thay số: \(79^\circ  + \widehat {B'} + 41^\circ  = 180^\circ \)

\( \Rightarrow \widehat {B'} = 180^\circ  - 79^\circ  - 41^\circ  = 60^\circ \)

 Xét \(\Delta ABC\) và \(\Delta A'B'C'\) ta có:

\(\widehat A = \widehat {A'} = 79^\circ \) (giả thuyết)

\(\widehat B = \widehat {B'} = 60^\circ \) (chứng minh trên)

Do đó, \(\Delta ABC\backsim\Delta A'B'C'\) (g.g)

b) Vì \(\Delta ABC\backsim\Delta A'B'C'\) nên \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}}\) (các cạnh tương ứng có cùng tỉ lệ)

Thay số, \(\frac{4}{6} = \frac{6}{{B'C'}} \Rightarrow B'C' = \frac{{6.6}}{4} = 9\)

Vậy \(B'C' = 9\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
14 tháng 9 2023 lúc 20:12

a) Vì tam giác \(\Delta MNP\backsim\Delta ABC\) nên \(\widehat B = \widehat N\) (hai góc tương ứng).

Vì \(MK\) là đường cao nên \(\widehat {MKN} = 90^\circ \);Vì \(AH\) là đường cao nên \(\widehat {AHB} = 90^\circ \)

Xét \(\Delta MNK\) và \(\Delta ABH\) có:

\(\widehat B = \widehat N\) (chứng minh trên)

\(\widehat {MKN} = \widehat {AHB} = 90^\circ \)

Do đó, \(\Delta MNK\backsim\Delta ABH\) (g.g)

Vì \(\Delta MNK\backsim\Delta ABH\) nên ta có: \(\frac{{MN}}{{AB}} = \frac{{NK}}{{BH}} = \frac{{MK}}{{AH}} = k \Rightarrow \frac{{MK}}{{AH}} = k\).

b) Vì \(\Delta MNP\backsim\Delta ABC\) nên \(\frac{{MN}}{{AB}} = \frac{{NP}}{{BC}} = \frac{{MP}}{{AC}} = k\)

\( \Rightarrow \frac{{NP}}{{BC}} = k \Leftrightarrow NP = kBC\)

Vì \(\frac{{MK}}{{AH}} = k \Rightarrow MK = kAH\)

 Diện tích tam giác \(MNP\) là:

\({S_1} = \frac{1}{2}.MK.NP\) (đvdt)

 Diện tích tam giác \(ABC\) là:

\({S_2} = \frac{1}{2}.AH.BC\) (đvdt)

Ta có: \(\frac{{{S_1}}}{{{S_2}}} = \frac{{\frac{1}{2}.MK.NP}}{{\frac{1}{2}.AH.BC}} = \frac{{kAH.kBC}}{{AH.BC}} = {k^2}\) (điều phải chứng minh)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
10 tháng 9 2023 lúc 1:10

a) Tam giác ABC tại A nên \(\widehat B = \widehat C\) (1)

Vì \(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\) (2)

Từ (1) và (2) nên \(\widehat N = \widehat P\) suy ra tam giác MNP cân tại M.

b) Vì tam giác ABC là tam giác đều nên \(\widehat A = \widehat B = \widehat C = {60^o}\)(3)

Vì \(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\) (4)

Từ (3) và (4) suy ra \(\widehat M = \widehat N = \widehat P = {60^o}\) nên tam giác MNP là tam giác đều.

c) Vì tam giác ABC có  \(AB \ge AC \ge BC\) suy ra \(\widehat C \ge \widehat B \ge \widehat A\) (quan hệ giữa góc và cạnh đối điện) (5)

Mà \(\Delta ABC \backsim \Delta MNP\) nên \(\widehat A = \widehat M{;^{}}\widehat B = \widehat N{;^{}}\widehat C = \widehat P\) (6)

Từ (5) và (6) suy ra \(\widehat P \ge \widehat N \ge \widehat M\) nên \(MN \ge MP \ge NP\)