Cho tam giác ABC, đường trung tuyến AM, đường cao AH.
CMR: Nếu \(\cot B=3\cot C\)thì AM = AC.
Cho tam giác ABC, đường trung tuyến AM, đường cao AH.
CMR: Nếu \(\cot B=3\cot C\)thì AM = AC.
cho tam giác ABC vẽ trung tuyến AM
CMR: nếu Cot B=3 Cot C thì AM=AC
cho tam giác ABC vẽ trung tuyến AM. CMR : Nếu Cot B=3 Cot C thì AM=AC
Cho tam giác nhọn ABC, góc B> góc C, đường cao AH và đường trung tuyến AM.
a) CMR: HC-HB=2HM
b) Gọi a là góc tạo bởi đường cao và đường trung tuyến. CMR: \(\tan\alpha=\frac{\cot C-\cot B}{2}\)
a) Do AM là trung tuyến nên BM = MC
Ta có : \(HC-HB-2HM\)
\(=HM+MC-HB-HM-HM\)
\(=MC-HB-HM\)
\(=MC-\left(HB+HM\right)\)
\(=MC-MB=0\)
\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)
b) Xét \(\Delta AHM\)có \(\tan a=\frac{HM}{AH}\)
Xét \(\Delta AHC\)có \(\cot C=\frac{HC}{AH}\)
Xét \(\Delta AHB\)có \(\cot B=\frac{HB}{AH}\)
Ta có : \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)
Mà \(HC-HB=2HM\)( câu a )
\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)
Vậy ...
cho tam giác có góc B> góc C, đường cao AH, trung tuyến AM. Đặt góc MAH= alpha. Tìm hệ thức giữa tan alpha với cot B và cot C
\(Ta\)\(có\)\(:\)
\(tana\)\(=\frac{HM}{AH}\)
\(\Rightarrow2\)\(tana\)\(=\frac{2HM}{AH}\)\(=\frac{CH-BH}{AH}\)\(=\frac{CH}{AH}\)\(-\frac{BH}{AH}\)
\(\Rightarrow cot\)\(C\)\(-\)\(cot\)\(B\)
\(\Rightarrow\)\(tana\)\(=\frac{cotC-cotB}{2}\)
Cho tam giác ABC vuông tại A có đường trung tuyến ứng với cạnh huyền AM = 10 cm; AB = 16 cm . Tính cot B?
A. c o t B = 3 4
B. c o t B = 4 5
C. c o t B = 5 4
D. c o t B = 4 3
Đáp án D
Do tam giác ABC vuông tại A có đường trung tuyến AM ứng với cạnh huyền nên:
cho tam giác ABC vuông tại A,AB=6cm,AC=8cm.Kẻ đường cao AH,trung tuyến AM
a)Tính BC,HA,HB,HC
b)tính sinB, cosB,tanB,cotB
c)tínhBD,CD
d)tính sin góc ADH, cos góc ADH,tan góc ADH,cot góc ADH
chj linh còn on 0 ra em bảo
có cái này hay lắm
cho tam giác ABC, đường trung tuyến AM. CMR: nếu cotB=3cotC thì AM=AC.
c
Gọi AH là đường cao của tam giác ABC (H thuộc BC)
Ta có : cot B=\(\dfrac{BH}{AH}\);cot C= \(\dfrac{CH}{AH}\) . Theo giả thiết : cot B=3 cot C ⇒ BH = 3CH
Mà BH + CH = BC⇒ BC= 4CH⇒ CH= \(\dfrac{BC}{4}\) = \(\dfrac{2CM}{4}\) = \(\dfrac{CM}{2}\)
Vậy CH = \(\dfrac{1}{2}\) CM
Ta cũngcó: BH = BM + MH = 2CH + MH = 3CH ⇒ MH = CH
Do đó AH là đường trung trực của CM => AC = AM (đpcm)
Hình bạn tự vẽ nha máy mình không vẽ được hình học
Chúc bạn mùa hè vui vẻ
Bài 2: Cho tam giác ABC vuông ở A , đường cao AH , trung tuyến AM . Gọi D E, theo thứ tự là hình chiếu của H trên AB AC , .
a) Tứ giác ADHE là hình gì?
b) Chứng minh DE AM . Trong trường hợp nào thì DE AM ?
c) Chứng minh DE AM .
d) Nếu tam giác ABC vuông cân tại A . Chứng minh tam giác MDE cân tại M .
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
=>ADHE là hình chữ nhật
b: Vì ADHE là hình chữ nhật
nên AH=DE(1)
Xét ΔAHM vuông tại H có AM là cạnh huyền
nên AH<=AM(2)
Từ (1) và (2) suy ra DE<=AM
Dấu '=' xảy ra khi H trùng với M
c: AEHD là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{B}\left(=90^0-\widehat{ACB}\right)\)
nên \(\widehat{AED}=\widehat{B}\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB
Ta có: MA=MC
=>ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: \(\widehat{AED}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}\)
\(=90^0\)
=>DE\(\perp\)AM