Bài 4: Tìm số tự nhiên n thoả mãn:
a) 4^n = 2^n+1
b) 16 = (n-1)^4
c) 125 = (2n+1)^3
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
Bài 1
Tìm ước chung của hai số n+3 và 2n+5 với n là số tự nhiên
Bài 2
Số 4 có thể là ước chung của hai số n+1 và 2n+5(n là số tự nhiên)ko
Bài 3
Tìm số tự nhiên n biết rằng;
a)1+2+3+4+5+......+n=231
b)1+3+5+7+.....+(2n-1)=169
3a)
1+2+3+4+5+...+n=231
=> (1+n).n:2=231
(1+n).n=231.2
(1+n).n=462
(1+n).n=2.3.7.11
(1+n).n=(2.11).(3.7)
(1+n).n=22.21
=>n=21
gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1 nhớ kết bạn với mình nhé
Bài 1: tìm các số nguyên x hoặc y thoả mãn
A) (2x-y) ( x+2) =12
B) xy= 2x+2y
Bài 2: tìm số tự nhiên n sao cho:
A) n+3 chia hết cho n
B) n+4 chia hết cho n+1
bài1
Tìm số tự nhiên nhỏ nhất biết số đó khi chia cho 3 dư 1,chia cho 5 dư 3,chia cho 7 dư 5
Bài 2
Tìm ước chung của hai số n+3 và 2n+5 với n là số tự nhiên
Bài 3
Số 4 có thể là ước chung của hai số n+1 và 2n+5(n là số tự nhiên)ko
Bài 4
Tìm số tự nhiên n biết rằng;
a)1+2+3+4+5+......+n=231
b)1+3+5+7+.....+(2n-1)=169
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
a) Tìm số tự nhiên n thoả mãn \(2^{2n-1}+4^{n+2}=264\)
b) Tính giá trị P = \(\frac{9^{14}.25^6.8^7}{18^{12}.625^3.24^3}\)
a)\(2^{2n-1}+4^{n+2}=264\)
\(264=2^3\cdot3\cdot11\)
\(2^3=2^{\left(3+1\right)\div2}=2^2\Rightarrow n=2\)
\(4^{n+2}=264-2^3=256\)
\(256=4^4=4^{4-2}=4^2\Rightarrow n=2\)
vậy \(n=2\)
b) \(P=\frac{9^{14}\cdot25^6\cdot8^7}{18^{12}\cdot625^3\cdot24^3}\)
\(P=\frac{9^{14}\cdot25^6\cdot8^7}{18^{12}\cdot25^6\cdot25^6\cdot24^3}\)
\(P=\frac{9^{14}\cdot8^7}{18^{12}\cdot24^3}=3\)
Tìm các số tự nhiên m,n biết :
a) \(\left(-\dfrac{1}{5^{ }}\right)^n\) =\(-\dfrac{1}{125}\)
b)\(\left(-\dfrac{2}{11^{ }}\right)^m=\dfrac{4}{121}\)
c)\(7^{2n}+7^{2n+2}=2450\)
c)\(7^{2n}+7^{2n+2}=2450\)
⇒\(7^{2n}+7^{2n}.7^2=2450\)
⇒\(7^{2n}.50=2450\)
⇒\(7^{2n}=49\)\(=7^2\)
⇒2n=2
⇒n=1
a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\) b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)
\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\) \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)
⇒n=3 ⇒m=2
Bài 5. Một số bài tập khác 1. Cho A=4+4^2+4^3+...+4^23+4^24 . Chứng minh: A chia hết 20; A chia hết 21; A chia hết 420 . 2. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau: a) n + 2 và n + 3 b) 2n + 1 và 9n + 4. 3. Tìm các số tự nhiên a, b biết: a) a + b = 192 và ƯCLN(a, b) = 24. b) 0 < a < b, a + b = 42 và BCNN(a, b) = 72. 4. Tìm số tự nhiên nhỏ nhất sao cho số đó chia 3 dư 2, chia cho 5 dư 3, chia cho 7 dư 4. 5. 5.1. Tìm số nguyên x, biết: a) 2x – 1 là bội của x – 3; b) 2x + 1 là ước của 3x + 2. 5.2. Tìm số nguyên x, y sao cho: a) (2x – 1)(y 2 + 1) = -17; b) (3 – x)(5 - y) = 2; c) x.y = 18; x + y = 11.
Giúp e vs ak, e đang cần gấp. PLS!
Bài 1. Tìm n thuộc N sao cho 1, n + 2 : hết cho n + 1 2, 2n + 7 : hết cho n + 1 3, 3n : hết cho 5 - 2n 4, 4n + 3 : hết cho 2n +6 5, 3n +1 : hết cho 11 - 2n
Bài 2. Tìm các chữ số x,y biết 1, 25x2y : hết cho 36 2, 2x85y : hết cho cả 2 , 3 , 5 3, 2x3y : hết cho cả 2 và 5 ; chia cho 9 dư 1 4, 7x5y1 : hết cho 3 và x - y = 4 5, 10xy5 : hết cho 45 6, 1xxx1 : hết cho 11 7, 52xy : hết cho 9 và 2, : cho 5 dư 4 8, 4x67y : hết cho 5 và 11 9, 1x7 + 1y5 : hết cho 9 và x - y = 6 10, 3x74y : hết cho 9 và x - y = 1 11, 20x20x20x : hết cho 7
Bài 3: CMR a, Trong 5 số tụ nhiên liên tiếp có 1 số : hết cho 5 b, ( 14n + 1) . ( 14n + 2 ) . ( 14n + 3 ) . ( 14n + 4 ) : hết cho 5 ( n thuộc N ) c, 88...8( n chữ số 8 ) - 9 + n : hết cho 9 d, 8n + 11...1( n chữ số 1 ) : hết cho 9 ( n thuộc N* ) e, 10n + 18n - 1 : hết cho 27
Bài 4. 1, Tìm các số tự nhiên chia cho 4 dư 1, còn chia cho 25 dư 3 2, Tìm các số tự nhiên chia cho 8 dư 3, còn chia cho 125 dư 12
giúp tui với
tui đang cần lắm đó bà con ơi
em mới lớp 5 seo anh gọi em là: BÀ CON
1. Không tính giá trị cụ thể hãy giải thích vì sao
a) 2019 + 2022⋮3
b) 2n + 16⋮2
c) 4n + 28⋮4
2. Tìm số tự nhiên n để
a) n + 7⋮n
b) 3n -2⋮n
c) 12 - 2n⋮n
d) n + 9 ⋮n +4
e) 2n + 5⋮n+1
3. Chứng minh rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3