Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thành An
Xem chi tiết
Hoàng Đình Minh Dương
11 tháng 2 2020 lúc 22:15

a,b,c< 0 mà a+b+c bé hơn hoặc bằng 1

a+b+c ít nhất phải bằng 3 chứ!

Khách vãng lai đã xóa
Vũ Quỳnh Trang
Xem chi tiết
Phước Nguyễn
23 tháng 7 2016 lúc 8:39

Không khó nha,!

HeroZombie
22 tháng 7 2016 lúc 18:57

\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)

l҉o҉n҉g҉ d҉z҉
2 tháng 4 2021 lúc 21:33

\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\)

\(=\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\)( do abc = 1 )

\(=\frac{bc}{ab+ac}+\frac{ac}{bc+ab}+\frac{ab}{ac+bc}\)(1)

Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)(1) trở thành \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)

và ta cần chứng minh \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)

Tuy nhiên đây là bất đẳng thức Nesbitt quen thuộc :D

nên ta có điều phải chứng minh

Đẳng thức xảy ra <=> x=y=z => a=b=c=1

Khách vãng lai đã xóa
Achana
Xem chi tiết
B.Thị Anh Thơ
17 tháng 1 2020 lúc 13:21

Hỏi đáp ToánHỏi đáp Toán

Khách vãng lai đã xóa
NUM NUM OKKE
Xem chi tiết
Lê Thành An
Xem chi tiết
Phùng Minh Quân
20 tháng 11 2019 lúc 13:59

bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge\frac{9}{4}\)

Có: \(\frac{a^2+ab+ca}{\left(b+c\right)^2}=\frac{a^2+ab+bc+ca}{\left(b+c\right)^2}-\frac{bc}{\left(b+c\right)^2}\ge\frac{\left(a+b\right)\left(c+a\right)}{\left(b+c\right)^2}-\frac{1}{4}\)

=> \(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge3\sqrt[3]{\frac{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}-\frac{3}{4}=\frac{9}{4}\)

Khách vãng lai đã xóa
Nyatmax
20 tháng 11 2019 lúc 14:19

bđt\(\Leftrightarrow\left[\Sigma_{cyc}\frac{a}{\left(b+c\right)^2}\right]\left(a+b+c\right)\ge\frac{9}{4}\)

Ta co:

\(VT\ge\left(\Sigma_{cyc}\frac{a}{b+c}\right)^2\ge\frac{9}{4}\)(theo bunhiacopxki va nesbit)

Dau '=' xay ra khi \(a=b=c\)

Khách vãng lai đã xóa
Quỳnh Hương
Xem chi tiết
Mr Lazy
2 tháng 8 2016 lúc 9:39

SD bất đẳng thức Côsi:

\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b+2c}{27}+\frac{b+2c}{27}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)^2}.\frac{b+2c}{27}.\frac{b+2c}{27}}=\frac{a}{3}\)

Tương tự rồi cộng lại ta có đpcm

Anh Triệu Quốc
Xem chi tiết
tibarca41
Xem chi tiết
Nguyễn Thiều Công Thành
2 tháng 9 2017 lúc 15:50

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)

Đào Thị Hồng Ngọc
Xem chi tiết
Mr Lazy
27 tháng 6 2015 lúc 19:42

Ta có: \(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab}{1+b^2}\)

\(1+b^2\ge2b\) \(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\)

Do đó: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);  \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Suy ra \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\)

Mặt khác ta có: \(3\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\frac{3}{a+b+c}\le1\)

\(\Rightarrow a+b+c\ge3\)

Do đó; \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\ge3\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)