CTR số\(19^{2n}\)+\(5^n+2000\) ko là số chính phương
CTR số 19^2n +5^n +2000 ko là số chính phương
Cho A =1+3+5+.......+2n-1 với n thuộc N* . Hỏi số A có là số chính phương ko? Vì sao
số các số hạng của a là:
[(2n-1)-1]:2+1=n(số)
=>A là:(2n-1+1)n:2==2n.n:2=n.n=n2
=>A là số chính phương
=>đpcm
Số số hạng là :
[(2n - 1) - 1] : 2 = (2n - 2) : 2 = n - 1 (số hạng)
Tổng A là :
[(2n - 1) + 1] . (n - 1) : 2 = 2n . (n - 1) : 2 = n . (n - 1) = n2 - n
Do đó A không phải là số chính phương.
Dãy 1;3;5;..; 2n - 1 có n số hạng
A = (2n - 1+ 1).n : 2 = n.n = n2 là số chính phương
Tổng sau là số chính phương ko ?
a)C=1+3+5+7+...+(2n-1)với n là số tự nhiên
b)D=2+4+6+8+...+2n với n là số tự nhiên
Cho C=2+4+6+...+2n (n thuộc N*).Hỏi C có phải là số chính phương ko?( số chính phương là số bằng bình phương của 1 số tự nhiên.VD:4 là số chính phương vì nó bằng 22.
C=2+4+6+...+2n
=(2n+2)+[(2n-2)+4]+[(2n-4)+6]+...+[(n+2)+n]
=2(n+1)n/2
=(n+1)n
vậy C không phải là số chính phương
bài 4
a) chứng minh rằng với mọi n thì 2n^2 +2n +3 ko là số chính phương
b)chứng minh rằng với mọi số tự nhiên n thì 3^n + 1002 ko là số chính phương
các bạn trình bày ra giúp mình nhé
Tao không biết và tao cũng chẳng quan tâm
mình mới học lớp 5 thôi, thành thật xin lỗi bạn nha
CTR : Số sau có phả là số chính phương ko ?
A , abab
B , abcabc
C , ababab
a ) Ta có : abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể là 101
Mà ab là số có 2 chữ số
=> abab không phải là số chính phương.
b ) Ta có : abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001
Mà abc là số có 3 chữ số
=> abcabc không phải là số chính phương.
c ) Ta có : ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể là 10101
Mà ab là số có 2 chữ số
=> ababab không phải là số chính phương.
chứng minh rằng n^4+2n^3+2n^2+2n+1 ko là số chính phương
ta có n^4+2n^3+2n^2+2n+1=(n^2+n+1)^2-n^2=(n^2+1)(n+1)^2=t^2khi và chỉ khi n^2+1 là số chính phương
có n^2+1=a^2khi và chỉ khi n=0
m có là số chính phương ko ? M= 1+3+5....+(2N-1) ( neN , N KHÁC O ) MNG GIÚP EM VỚI Ạ
Số số hạng là (2n-1-1):2+1=n(số)
Tổng là (2n-1+1)*n/2=n^2
=>M là số chính phương
Ta có: M = 1 + 3 + 5 +... + 2n-1
Số số hạng của dạy là: [(2n-1) -1 ]:2 + 1 = (2n-2):2+1 = n-1+1 = n
M = (1+2n-1)*n/2 = 2n*n/2 = n^2
Mà n ∈ N* => n^2 là SCP.
cho M=1+3+5+...+(2n-1) (với n thuộc N,n khác 0)
Hỏi M có là số chính phương ko?
Số số hạng của M là : [(2n-1)-1]: 2+1=n^2
Tổng M là:(2n-1+1).n:2=n^2
=>M là số chính phương
:3
Trong tổng trên có số số hạng là :
(2n-1-1) : 2 + 1 = n ( số hạng )
=> M = (2n-1+1).n/2 = 2n.n/2 = n^2
=> M là số chính phương
Tk mk nha