Cho \(S_n=\frac{1}{\sqrt{n^3}+\sqrt{n}}\)Chứng minh rằng: \(S_1+S_2+...+S_n< 2\)
Cho \(S_n=\frac{1}{n^2\left(n+2\right)\sqrt{n+1}}\)Chứng minh rằng: \(S_1+S_2+...+S_n< \frac{1}{2\sqrt{2}}\)
Cho \(S_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)Chứng minh rằng: \(S_1+S_2+...+S_{2017}< \frac{2017}{2019}\)
Cho \(S_n=\frac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}\)Chứng minh rằng: \(S_1+S_2+...+S_{40}\in Z\)
Giải:
Ta có :
\(Sn=\frac{4n+\sqrt{\left(2n+1\right)\left(2n-1\right)}}{\sqrt{2n+1}+\sqrt{2n-1}}\)
\(=\frac{\left(\sqrt{2n+1}-\sqrt{2n-1}\right)\left[\left(2n-1\right)+\left(2n+1\right)+\sqrt{\left(2n+1\right)\left(2n-1\right)}\right]}{\left(\sqrt{2n+1}+\sqrt{2n-1}\right)\left(\sqrt{2n+1}-\sqrt{2n-1}\right)}.\)
\(=\frac{\left(\sqrt{2n+1}\right)^3-\left(\sqrt{2n-1}\right)^3}{2}\)
Tương tự =>\(S_1+S_2+...+S_{40}=\frac{\left(\sqrt{2n_1+1}\right)^3+\sqrt{2n_{40}+1}^3}{2}\)
Sau đó thì dễ rồi ha
Cái đề thấy sai sai. You xem lại thử nhé
cho \(S_n=\frac{\sqrt{3}+S_{n-1}}{1-\sqrt{3}S_{n-1}}\) với n ϵ N và n ≥ 2, biết \(S_n=1\)
Tính \(S=S_1+S_2+S_3+...+S_{2005}\)
\(S_1=1\) (còn \(S_n=1\Rightarrow S=2015\))
Tính được \(S_1=1;S_2=-2-\sqrt{3};S_3=-2+\sqrt{3};S_4=1\)
Vậy \(S_i=S_{i+3}\left(i\ge1\right)\)
Mà \(S_1+S_2+S_3=-3\)
\(\Rightarrow S=\sum\limits^{2015}_{i=1}\left(S_i\right)=-3\cdot668+S_{2015}=-3\cdot668+1=-2003\)
#Kaito#
Cho \(S_n=\frac{1}{\sqrt{n+\sqrt{n^2+1}}}\)với mọi N. Tính: \(S_1+S_2+...+S_{2018}\)
Cho \(S_n=\sqrt{1+\left(\frac{n+1}{n}\right)^2}+\sqrt{\frac{1}{n^2}-2\left(\frac{1}{n}-1\right)}\)Tính: \(\frac{1}{S_1}+\frac{1}{S_2}+...+\frac{1}{S_{2018}}\)
Cho \(S_n=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(4n-1\right)\left(4n+1\right)}n\in N^{ }\)*
a) Tính \(S_1,S_2,S_3,S_4\)
b) Hãy dự toán công thức Tính \(S_n\)và chứng minh bằng quy nạp
Bạn ghi đề bài sai thì phải, \(\frac{1}{\left(4n-1\right)\left(4n+1\right)}\) không hề phù hợp với các số hạng đầu tiên
Với số tự nhiên n , \(n\ge3\)
Đặt \(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
Chứng minh rằng \(S_n< \frac{1}{2}\)
Ta co:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Ap vào bài toan được
\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)
iopdtg5 r4ytr'hfgo;hrt687y5t53434]\trvf;lkg
Cho \(S_n=\sqrt{x^2-2nx+n^2}\)
Tìm GTNN của \(f\left(x\right)=S_1+S_2+S_3\)
\(S_n=\sqrt{\left(x-n\right)^2}=\left|x-n\right|\)
\(f\left(x\right)=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|+\left|x-2\right|\)
\(\ge\left|x-1+3-x\right|+0=2\)
Dấu "=" xảy ra khi \(\left(x-1\right)\left(3-x\right)\ge0\text{ và }x-2=0\Leftrightarrow x=2\)