Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tín Đinh
Xem chi tiết
Tín Đinh
Xem chi tiết
Tín Đinh
Xem chi tiết
Witch Rose
5 tháng 7 2017 lúc 19:35

Giải:

Ta có :

\(Sn=\frac{4n+\sqrt{\left(2n+1\right)\left(2n-1\right)}}{\sqrt{2n+1}+\sqrt{2n-1}}\)

\(=\frac{\left(\sqrt{2n+1}-\sqrt{2n-1}\right)\left[\left(2n-1\right)+\left(2n+1\right)+\sqrt{\left(2n+1\right)\left(2n-1\right)}\right]}{\left(\sqrt{2n+1}+\sqrt{2n-1}\right)\left(\sqrt{2n+1}-\sqrt{2n-1}\right)}.\)

\(=\frac{\left(\sqrt{2n+1}\right)^3-\left(\sqrt{2n-1}\right)^3}{2}\)

Tương tự =>\(S_1+S_2+...+S_{40}=\frac{\left(\sqrt{2n_1+1}\right)^3+\sqrt{2n_{40}+1}^3}{2}\)

Sau đó thì dễ rồi ha

alibaba nguyễn
5 tháng 7 2017 lúc 19:38

Cái đề thấy sai sai. You xem lại thử nhé

alibaba nguyễn
5 tháng 7 2017 lúc 19:47

n là gì? Không cho thì đề sai nhé.

dbrby
Xem chi tiết
Việt Bắc Nguyễn
15 tháng 5 2019 lúc 22:42

\(S_1=1\) (còn \(S_n=1\Rightarrow S=2015\))

Tính được \(S_1=1;S_2=-2-\sqrt{3};S_3=-2+\sqrt{3};S_4=1\)

Vậy \(S_i=S_{i+3}\left(i\ge1\right)\)

\(S_1+S_2+S_3=-3\)

\(\Rightarrow S=\sum\limits^{2015}_{i=1}\left(S_i\right)=-3\cdot668+S_{2015}=-3\cdot668+1=-2003\)

#Kaito#

Tín Đinh
Xem chi tiết
fairy
3 tháng 7 2017 lúc 15:44

hình như thừa cái căn ngoài cùng

Tín Đinh
3 tháng 7 2017 lúc 16:06

Đề đúng bạn ơi !!

Tín Đinh
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 8 2020 lúc 11:42

Bạn ghi đề bài sai thì phải, \(\frac{1}{\left(4n-1\right)\left(4n+1\right)}\) không hề phù hợp với các số hạng đầu tiên

Ngoc Anhh
Xem chi tiết
alibaba nguyễn
17 tháng 9 2018 lúc 9:29

Ta co:

\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Ap vào bài toan được

\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)

Bùi Văn Khang
1 tháng 4 2020 lúc 19:26

iopdtg5 r4ytr'hfgo;hrt687y5t53434]\trvf;lkg

Khách vãng lai đã xóa
Hà Phương
Xem chi tiết
Mr Lazy
14 tháng 8 2015 lúc 23:49

\(S_n=\sqrt{\left(x-n\right)^2}=\left|x-n\right|\)

\(f\left(x\right)=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|+\left|x-2\right|\)

\(\ge\left|x-1+3-x\right|+0=2\)

Dấu "=" xảy ra khi \(\left(x-1\right)\left(3-x\right)\ge0\text{ và }x-2=0\Leftrightarrow x=2\)