Tìm số tự nhiên N sao cho :
3n + 2 và 7n + 1 là 2 số nguyên tố
Thank các bạn
Tìm tất cả các số tự nhiên n sao cho \(p=3n^3-7n^2+3n+6\) là một số nguyên tố
\(P=3n^3-7n^2+3n+6\)
\(=3n^3+2n^2-9n^2-6n+9n+6\)
\(=n^2\left(3n+2\right)-3n\left(3n+2\right)+3\left(3n+2\right)\)
\(=\left(3n+2\right)\left(n^2-3n+3\right)\)
để p là nguyên tố thì 3n+2 hoặc n2-3n+3 phải bằng 1 (nếu cả hai tích số đều lớn hơn 1 => p là hợp số, trái với đầu bài)
*3n+2=1=>n=-1/3
*n2-3n+3=1<=>n2-3n+2=0
\(\Leftrightarrow n^2-2\times\frac{3}{2}n+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(n-\frac{3}{2}\right)^2=\frac{1}{4}=\left(-\frac{1}{2}\right)^2=\left(\frac{1}{2}\right)^2\)
\(\orbr{\begin{cases}n-\frac{3}{2}=\frac{1}{2}\\n-\frac{3}{2}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2\\n=1\end{cases}}}\)
nếu n= 2 thì (3n+2)(n2-3n+3)=(3.2+2).1=8 (ko phải số nguyên tố nên ta loại)
vậy n=1
1.Tìm số tự nhiên n để:
a, 2n+1 và 7n+2 là 2 số nguyên tố cùng nhau.
b,9n+24 và 3n+4 là 2 số nguyên tố cùng nhau.
2.Chứng minh rằng 2n+1 và 3n+1 (n là số tự nhiên) là 2 số nguyên tố cùng nhau.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Tìm số tự nhiên n sao cho các số 3n+2 và 5n+4 là các số nguyên tố cùng nhau
Với số tự nhiên n,chứng tỏ các cặp số sau là số nguyên tố cùng nhau.
a)2n + 3 và 3n + 5 c,3n + 4 và 4n + 5
b)5n + 3 và 7n + 5 d,4n + 1 và 6n + 2
a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)
Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau
Bài 1: Tìm số tự nhiên nhỏ nhất có 12 ước số.
Bài 2: Chứng minh rằng với mọi số tự nhiên n, các số sau là hai số nguyên tố cùng nhau: a) 7n + 10 và 5n + 7 ; b) 2n + 3 và 4n + 8
c) 4n + 3 và 2n + 3 ; d) 7n + 13 và 2n + 4 ; e) 9n + 24 và 3n + 4 ; g) 18n + 3 và 21n + 7
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
Thanks,tui cũng đang mắc ở bài 2
1,Tìm n thuộc N để n+1 và 7n+4 là 2 số nguyên tố cùng nhau.
2,Tìm số tự nhiên n sao cho n2+3 là số chính phương.
Tìm số tự nhiên n để :
a,3n+1 chia hết cho 7
b,2n+1 và 7n+2 nguyên tố cùng nhau
3n+1 chia hết cho 7
=> 3n+1 thuộc B(7)
=> 3n+1 = 7k
=> 3n = 7k-1
=> n = \(\frac{7k-1}{3}\)
Gọi ƯCLN(2n+1; 7n+2) là d. Ta có:
2n+1 chia hết cho d => 14n+7 chia hết cho d
7n+2 chia hết cho d => 14n+4 chia hết cho d
=> 14n+7-(14n+4) chia hết cho d
=> 3 chia hết cho d
Giả sử 2 số này không nguyên tố cùng nhau
=> 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3
=> n-1 chia hết cho 3
=> n = 3k+1
Vậy để 2n+1 và 7n+2 nguyên tố cùng nhau thì n \(\ne\) 3k+1
Tìm các số tự nhiên n sao cho 2n+1 và 3n+1 là các số chính phương và -2n+9 là số nguyên tố
đề bài là -2n+9 là số nguyên tố chứ
-2n+9 là số nguyên tố => -2n+9>0=>n<5
mà n tự nhiên =>n\(\in\){1,2,3,4}
Xét n=1=>2n+1=3 không phải scp (loại)
Xét n=2=> 2n+1=5 không phải scp (loại)
Xét n=3=> 2n+1=7 không phải scp (loại)
Xét n=4=> 3n+1=13 không phải scp (loại)
Vậy không có số tự nhiên n t/m đề bài
tìm số tự nhiên n sao cho :
7n+13 và 2n+4 là 2 số nguyên tố cùng nhau
Gọi ƯC(7n+13,2n+4)=d
Ta có: 7n+13 chia hết cho d=>2.(7n+13) chia hết cho d=>14n+26 chia hết cho d
2n+4 chia hết cho d=>7.(2n+4) chia hết cho d=>14n+28 chia hết cho d
=>14n+28-(14n+26) chia hết cho d
=>2 chia hết cho d
=>d=Ư(2)={1,2}
Để 7n+13 và 2n+4 à số nguyên tố cùng nhau
=>ƯC(7n+13,2n+4)=1
=>d=1
=>d khác 2
=>7n+13 không chia hết cho 2
mà 13 không chia hết cho 2
=>7n chia hết cho 2
Vì (2,7)=1
=>n chia hết cho 2
=>n=2k
Vậy n=2k