Cho tam giác ABC nhọn có AB = c , AC = b , BC =a . Chứng minh rằng : \(a^2=b^2+c^2-2bc.\cos A\)
Cho tam giác ABC nhọn, BC= a, AC=b, AB= c
chứng minh rằng: a2 = b2 + c2 - 2bc.\(\cos A\)
từ B kẻ đường thẳng vuông góc với AC tại k
ta có: 2.AK.b=AK.b+AK.b
=AK.(AK+CK)+(b-CK).b
=AK^2+AK.CK+b^2-b.CK
=c^2-BK^2+b^2-CK.(b-AK)
=c^2-(a^2-CK^2)+b^2-CK.CK
=c^2-a^2+CK^2+b^2-CK^2
=b^2+c^2-a^2
mà: cosA=AK/c=2.AK.b/2bc
=(b^2+c^2-a^2)/2bc
=>b^2+c^2-a^2=2bc.cosA (đpcm)
Cho tam giác ABC nhọn, AB=c BC=a AC=b.
Chứng minh: a2 = b2 +c2 - 2bc cos A
Lời giải:
Kẻ \(BH\perp AC\)
Theo công thức lượng giác:
\(\frac{BH}{AB}=\sin A; \frac{AH}{AB}=\cos A\Rightarrow BH=\sin A. AB=c\sin A; AH=\cos A.AB=c\cos A\)
\(\Rightarrow CH=AC-AH=b-c\cos A\)
Do đó áp dụng định lý Pitago:
\(BC^2=BH^2+CH^2\)
\(\Leftrightarrow a^2=(c\sin A)^2+(b-c\cos A)^2\)
\(\Leftrightarrow a^2=c^2\sin ^2A+b^2+c^2\cos ^2A-2bc\cos A\)
\(\Leftrightarrow a^2=c^2(\sin ^2A+\cos ^2A)+b^2-2bc\cos A\)
\(\Leftrightarrow a^2=c^2+b^2-2bc\cos A\)
Ta có đpcm.
Cho tam giác nhọn ABC có BC=a; AC=b ; AB=c . C/m \(a^2=b^2+c^2-2bc.\cos A\)
Cho tam giác ABC có BC = a, AC = b, AB = c, đường phân giác trong ứng với góc A là la. Chứng minh: \(l_a=\dfrac{2bc.\cos\dfrac{A}{2}}{b+c}\)
1/ cho tam giác ABC có AB = c, BC = a, AC = b. chứng minh a2 = b2 + c2 - 2bc . Cos A
giúp mjk nha !!! thks m.n !!
Cho tam giác nhọn ABC, \(BC=a,\) \(CA=b\), \(AB=c\). Chứng minh rằng:
\(a=b.\cos C+c.\cos B\)
1) Cho tam giác ABC vuông tại A. Từ điểm D trên cạnh AC, vẽ DE vuông góc với BC tại E. Chứng minh \(\sin B\)=\(\frac{AB.AD+EB.ED}{AB.EB+AD.ED}\)
2) Cho tam giác ABC có 3 góc nhọn, AB=c, AC=b,BC-a. Chứng minh rằng \(^{a^2=b^2+c^2-2bc.\cos A}\)
3) Tính các tỉ số lượng giác sau ( không dùng bảng lượng giác và máy tính):
a) \(\tan15^o,\sin15^o\)
b) \(\sin22^o30',\tan22^o30'\)
c) \(\cos36^o\)
a) cho tam giác ABC . Chứng minh rằng : sin( B + C ) = sinA và cos \(\frac{A+B}{2}\) = sinC ; b) cho tam giác ABC có vector BA nhân vector BC = AB2 . Chứng minh rằng : tam giác ABC vuông ; c) chứng minh rằng : sin6a + cos6a + 3sin2acos2a = 1
a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)
(A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)
b) Bạn xem lại đề nhé
c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)
= \(sin^4a+cos^4a+2sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)^2=1\)
Cho tam giác ABC nhọn, BC=a, AC=b, AB=c. Chứng minh rằng: b2=a2+c2-2ac.cosB.
Trong tam giác vuông ACH có AC2 = AH2 + CH2 = AH2 + (BC - BH)2 = AH2 + BC2 - 2.BC.BH + BH2
Trong tam giác vuông ABH có AH2 + BH2 = AB2 và BH = AB.cosB hay BH = c.cosB
Suy ra AC2 = BC2 + AB2 - 2BC.c.cosB hay b2 = a2 + c2 - 2ac.cosB