Cho n số nguyên liên tiếp có tích bằng n và tổng bằng 2014.
CMR: n chia hết cho 4
Cho n số nguyên tố có tích bằng n và tổng bằng 2014. Chứng minh n chia hết cho 4
Xét 2 trường hợp n chẵn và n lẻ sau đây:
A) Nếu n là số lẻ thì tích n số tự nhiên bằng lẻ nên tất cả các số trong n đều là số lẻ, tổng của n số lẻ là một số lẻ mà theo đề bài,
tổng của n số là 2014 ( loại trường hợp này)
B) Nếu n là số chẵn thì tích n số tự nhiên là một số chẵn nên trong n phải ít nhất có một số chẵn.Xét 2 khả năng sau:
+ Nếu trong n chỉ có 1 số chẵn thì (n-1) còn lại đều là các số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ
và không thể bằng 2014( loại khả năng này)
+Nếu trong n có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên n chia hết cho 4.
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ
Nhìn là muốn chạy rùi
^-^
p thử lên mạng mà tra từng câu 1 mik nghĩ là có
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
Làm 1;2;3;4 bài 1 lần thôi chứ sao 15 bài 1 lúc ?
Nghĩ ai rảnh mà giải ah ?
\(CMR:\)
a,Trong hai số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 2
b,Trong ba số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c,Tổng của 3 số nguyên liên tiếp chia hết cho 3
d,Tổng của 5 số nguyên liên tiếp chia hết cho 5
e,Tổng của n số nguyên lẻ liên tiếp chia hết cho n
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
a) thấy 60 chia hết cho 15 => 60n chia hết cho 15
45 chia hết cho 15 nhưng không chi hết cho 30
=> 60n+45 chia hết cho 15 nhưng không chia hết cho 30
b) ta có 3 số nguyên liên tiếp là a,a+1,a+2
tổng của 3 số nguyên liên tiếp này là a+a+1+a+2=3a+3 chia hết cho 3
d) vì khi chia 4 stn này cho 5 nhận các số dư khác nhau => 1 số là 5k+1, 1 số là 5n+2, 1 số là 5a+3, 1 số là 5b+4 (với k,n,a,b thuộc n)
=> tổng 4 stn này là 5k+1+5n+2+5a+3+5b+4= 5(k+n+a+b)+5 chia hết cho 5
a)
60n + 45 = 15 x 4n + 3 x 15 = 15 x ( 4n + 3 )
=> Chia hết cho 30 .
_ Vì 60n chia hết cho 30 mà 45 không chia hết cho 30 .
=> 60n + 45 không chia hết cho 30 .
b)
1)
_ Gọi 3 số tự nhiên liên tiếp là : a , a + 1 , a + 2 .
Ta có : a + ( a + 1 ) + ( a + 2 ) = 3a + 3 .
Vì 3a chia hết cho 3 , 3 chia hết cho 3 .
=> Tổng 3 số tự nhiên liên tiếp chia hết cho 3 .
2)
_ Gọi 4 số tự nhiên liên tiếp là : a , a + 1 , a + 2 , a + 3 .
Ta có : a + ( a + 1 ) + ( a + 2 ) + ( a + 3 ) = 4a + 6 .
Vì 4a chia hết cho 4 , 6 không chia hết cho 4 .
=> Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 .
c)
1)
_ Gọi 5 số chẵn liên tiếp là : a , a + 2 , a + 4 , a + 6 , a + 8 .
Ta có : a + ( a + 2 ) + ( a + 4 ) + ( a + 6 ) + ( a + 8 ) = 5a + 20 .
Vì 5a chia hết cho 5 , 20 chia hết cho 5 .
=> Tổng 5 số chẵn liên tiếp chia hết cho 5 .
2)
_ Gọi 5 số lẻ liên tiếp là : b , b + 2 , b + 4 , b + 6 , b + 8 .
Ta có : b + ( b + 2 ) + ( b + 4 ) + ( b + 6 ) + ( b + 8 ) = 5b + 20 .
Vì b là số lẻ nên 5b không chia hết cho 2 hay không chia hết cho 2,5 = 10 .
20 chia hết cho 10 .
=> 5b + 20 không chia hết cho 10 .
=> Tổng 5 số lẻ liên tiếp chia 10 dư 5 .
các bn ơi giải giúp mik bài này vs
CMR
a) với mọi n thuộc N thì 60n + 45 chia hết cho 15 nhưng không chia hết cho 30
b) tổng ba số nguyên liên tiếp chia hết cho 3 , tổng 4 số nguyên liên tiếp không chia hết cho 4
c) Tổng 5 số chẵn liên tiếp chia hết cho 10 , tổng 5 số lẻ liên tiếp chia 10 dư 5
d) Cho 4 số tự nhiên không chia hết cho 5 , khi chia cho 5 được các số dư khác nhau . CM : tổng của chúng chia hết cho 5
Cho n là số tự nhiên khác 0
a) Chứng minh rằng tích của n số nguyên liên tiếp chia hết cho n
b) Tổng của n số nguyên liên tiếp có chia hết cho n hay không? Vì sao?
a)Goi day so la a; a+1; a+2; ...; a+n
Dem tung so cua day so tren chia cho n thi co 1 so chi het cho n
Goi so do la a+k (k thuoc N va k>=1 va k <=n)
=> (a+1)(a+2)...(a+k)...(a+n-1)(a+n) chia het cho n
b)Tong cua n so nguyen lien tiep khong chia het cho n vi gia su n=6 thi 1+2+3+4+5+6=21 khong chia het cho 6
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6