Tính: A= 2/6 + 2/12 + 2/20 + .... + 2/90
Tính giá trị của A=3-1/2-1/6-1/12-1/20-......-1/90
A = \(3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{90}\)
A = \(\frac{1}{3}-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-...-\frac{1}{90}\)
A = \(\frac{1}{3}-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}-\frac{1}{5}-...-\frac{1}{90}\)
A = \(\frac{1}{3}-\frac{1}{90}\)
A = \(\frac{29}{90}\)
Tính: B=1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
A=1/90-1/72-1/56-1/42-1/30-1/20-1/12-1/6-1/2
em lớp 6 nha
B= 1/2 + 1/6 + 1/12 +1/20 + 1/30 + 1/42 + 1/56 + 1/72
B= 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 + 1/7*8 + 1/8*9
B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
B=1+0-0-0-0-0-0-0-1/9
B=1-1/9
B=8/9
k em nha
a Tính B=1*2+2*4+3*6+4*8+5*10 / 3*4+6*8+9*12+12*16+15*20
b CMR : 1ab1-1ba1 chia hết cho 90 với a>hoặc =b
\(B=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(B=\frac{1.2+2^2.1.2+3^21.2+4^2.1.2+5^2.1.2}{3.4+2^23.4+3^23.4+4^23.4+5^23.4}\)
\(B=\frac{2.\left(1+2^2+3^2+4^2+5^2\right)}{12\left(1+2^2+3^2+4^2+5^2\right)}\)\(\Rightarrow B=\frac{2}{12}=\frac{1}{6}\)
Tính nhanh
A=111/110+91/90+73/72+…………+21/20+13/12+7/6+3/2
A = 1 + 1/110 + 1 + 1/90 + ... + 1 + 1 /2
A = 10 + 1/1.2+ 1 /2.3 + ... + 1/9.10 + 1/10.11
A = 10 + 1/1 - 1/2 + 1 /2 - 1/3 + ... + 1/9 - 1/10 + 1/10 - 1/11
A = 10 + 1/1 - 1/11
A = 10 + 10/11
A = 120/11
A = \(\frac{111}{110}+\frac{91}{90}+\frac{73}{72}+...+\frac{13}{12}+\frac{7}{6}+\frac{3}{2}\)
A = \(\left(\frac{1}{2}+1\right)+\left(\frac{1}{6}+1\right)+\left(\frac{1}{12}+1\right)+....+\left(\frac{1}{110}+1\right)\)
A = (1 + 1 + 1 +...+ 1) + \(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
A = 10 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
A = \(10+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
A = \(10+\left(1-\frac{1}{11}\right)\)
A = \(10+\frac{10}{11}\)
A = \(\frac{120}{11}\)
Tính giá trị biểu thức A= 1 2 + 1 6 + 1 12 + 1 20 + . . . + 1 90 12+16+112+120+...+190 ta được kết quả A=...
Tính : A=1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72 + 89/90
A = (1 -1/2) + (1 - 1/6) + (1 - 1/12) + (1 - 1/20 ) + ...+ (1 - 1/ 90)
= (1+1+1+1+1+1+1+1+1) - ( 1/2 - 1/6 - 1/12 - 1/ 20 - ...- 1/90)\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)\(=9-\left(1-\frac{1}{10}\right)=\frac{81}{10}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
A=1/2+1/6+1/12+1/20+...+1/90( tính giá trị biểu thứ bằng cách hợp lý)
A= 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72 + 1/90
=1/(1.2)+1/(2.3)+1/(3.4)+1/(4.5) +1/(5.6)+1/(6.7)+1/(7.8) +1/(8.9)+1/(9.10)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5.+1/5-1/6... +1/9-1/10
=1-1/10
=9/10
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9.10}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{1}-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
tính A= 1/90+1/72+1/56-1/42-1/30-1/20-1/12-1/6-1/2
Đặt biểu thức cần tính là A. Ta có :
A = 9/10 -( 1/90 + 1/72 + ... + 1/2)
= 9/10 - { 1/( 9.10) + 1/(9.8) + ... + 1/( 2.1)}
= 9/10 - ( 1/9 - 1/10 + 1/8 - 1/9 + ...+ 1 - 1/2) ( 1/90 = 1/(9.10) = 1/9 - 1/10)
= 9/10 - ( 1 - 1/10)