chứng minh rằng √(x^2+2x+5) +√(2x^2+4x+6) ≥ 4
chứng minh rằng các biểu thức sau có giá trị dương với mọi giá trị của x
1,B=x2+4x+6
2,D=x2+x+1
3,F=2x2+4x+3
4,H=4x2+4x+2
5,K=4x2+3x+2
6,L=2x2+3x+4
B = x2 + 4x + 6
= (x2 + 4x + 4) + 2
= (x + 2)2 + 2 > 0
D = x2 + x + 1
= (x2 + 2x\(\frac{1}{2}\)+\(\frac{1}{4}\)) + \(\frac{3}{4}\)
= (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)> 0
F = 2x2 + 4x + 3
= (2x2 + 4x + 2) + 1
= (\(\sqrt{2x}+\sqrt{2}\))2 + 1 > 0
H = 4x2 + 4x + 2
= (4x2 + 4x + 1) + 1
= (2x + 1)2 + 1 > 0
K = 4x2 + 3x + 2
= (4x2 + 2.2.\(\frac{3}{4}\)x + \(\frac{9}{16}\)) + \(\frac{23}{16}\)
= (2x + \(\frac{3}{4}\))2 + \(\frac{23}{16}\)> 0
L = 2x2 + 3x + 4
= (x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}\)) + x2 + \(\frac{7}{4}\)
= (x + \(\frac{3}{2}\))2 + x2 + \(\frac{7}{4}\)> 0
Vậy các biểu thức trên luôn dương với mọi x
\(B=x^2+2x+1+5=\left(x+1\right)^2+5>0\)
\(H=4x^2+4x+1+1=\left(2x+1\right)^2+1>0\)
Các đa thức còn lại đều có delta < 0 và hệ số a >0 nên luôn dương với mọi x
chứng tỏ rằng x=-1 là nghiệm của P(x)=3x^5-4x^4-2x^3+4x^2+5x+6 nhưng không phải là nghiệm của Q(x)=-x^5+2x^4-2x^3+3x^2-x+1/4
NHANH NHANH GIÙM MK NHA THANKS NHÌU!!!!!!!!!!!!
Cho các đa thức
P(x)= \(3x^5+5x-4x^4-2x^3+6+4x^2\)
Q(x)= \(4x^4-x+3x^2-2x^3-7-x^5\)
c) Chứng tỏ rằng x=-1 là nghiệm của\(P\left(x\right)\) nhưng không phải là nghiệm của Q(x)
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
Bài 3: Chứng minh rằng biểu thức sau ko phụ thuộc vào biểu thức
A=(x-5)(2x+3)-2x(x-3)+x+7
B=4(y-6)-y22(2+3y)+y(5y-4)+3y2
Bài 4:
a)4a2-16b2
b) 4x2-4x+1
c.1) (2x+y)2-x2
c,2) y2+_x-y2
d) (x-y)2-(2x-y)2
e) 8x3-y3
i)3x+6y+(x+2y)
j) ax-ay-x+y
k) 2x2-y+6x2y-3y2
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
Tớ xin làm câu k nhé!
\(k)2x^2-y+6x^2y-3y^2\\=(2x^2-y)+(6x^2y-3y^2)\\=(2x^2-y)+3y(2x^2-y)\\=(2x^2-y)(1+3y)\)
#\(Toru\)
\(c)\\1)(2x+y)^2-x^2\\=(2x+y-x)(2x+y+x)\\=(x+y)(3x+y)\\2)?\)
Dấu _ là sao cậu?
#\(Toru\)
Bài 6:Chứng minh rằng các biểu thức sau ko phụ thuộc vào x
1)(3x-5)(2x+11)-(2x+3)(3x+7)
2)(x-5)(2x+3)-2x(x-3)+x+7
3)(2x+3)(4x^2-6x+9)-2(4^3-1)
Bài 7:tính
B=2(x^3+y^3)-3(x^2+y^2)vói x+y=1
TL:
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+23x-55-6x^2-23x-21\)
\(=-76\)
Mấy câu kia tương tự !
Chứng minh rằng các biểu thức sau có giá trị dương với mọi giá trị của x
1,A=x2+4x+6
2,B=x2+x+1
3,C=2x2+4x+3
4,D=4x2+4x+2
5,K=4x2+3x+2
6,L=2x2+3x+4
Nhanh nha!Thank!
a, \(x^2+4x+6\)
\(=x^2+2x+2x+4+2\)
\(=\left(x^2+2x\right)+\left(2x+4\right)+2\)
\(=x.\left(x+2\right)+2.\left(x+2\right)+2\)
\(=\left(x+2\right)^2+2\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2\ge2>0\)
Vậy......
b, \(x^2+x+1\)
\(=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x^2+\dfrac{1}{2}x\right)+\left(\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Vậy......
c, \(2x^2+4x+3\)
\(=2x^2+2x+2x+2+1\)
\(=\left(2x^2+2x\right)+\left(2x+2\right)+1\)
\(=2x.\left(x+1\right)+2.\left(x+1\right)+1\)
\(=2\left(x+1\right)^2+1\)
Với mọi giá trị của \(x\in R\) ta có:
\(2\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy......
Mấy câu còn lại làm tương tự!
Làm theo cách " Giữ nguyên hạng tử bậc hai chia đôi hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức "
Chúc bạn học tốt!!!
1, \(x^2+4x+6=\left(x+2\right)^2+2\ge2\)
...
2, \(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
...
3,\(C=2x^2+4x+3=2\left(x^2+2x+1\right)+1\ge1\)
...
\(4,D=4x^2+4x+2=\left(2x+1\right)^2+1\ge1\)
...
\(5,K=4x^2+3x+2=4\left(x^2+\dfrac{3}{4}x+\dfrac{1}{2}\right)=4\left(x+2.x\dfrac{3}{8}+\dfrac{9}{64}\right)+\dfrac{23}{16}\ge\dfrac{23}{16}\)
...
\(6,L=2x^2+3x+4=2\left(x^2+\dfrac{3}{2}x+2\right)=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\dfrac{23}{8}\ge\dfrac{23}{8}\)
1.chứng minh \(\dfrac{6x^3-x^6}{x^4-2x^2+4}< 3\) với mọi x ∈ R
2.chứng minh \(\dfrac{x^4-4x^2+8}{2x-x^2}>4\) với mọi x ∈ (0;2)
1, Tìm số tự nhiên n để A=(n+5)(n+6) chia hết cho 6n
2, Cho đa thức f(x) = 5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3
Chứng tỏ đa thức trên không có nghiệm
3, Chứng minh rằng nếu x/(a+2b+c) = y/(2a+b-c) = z/(4a-4b+c)
Thì a/(x+2y+z) = b/(2x+y-z) = c/(4x-4y+z)
4, Cho p>3 . Chứng minh rằng nếu các số p, p+d, p+2d là các số nguyên tố thì d chia hết cho 6
5, Chứng minh rằng 5/(1.2.3) + 8/(2.3.4) + 11/(3.4.5) + ..... + 6038/( 2012.2013.2014) <2
Bài 1: Tính giá trị:
A= x^2+4y^2-2x+10+4xy-4y tại x+2y=5
B= (x^2+4xy+4y^2)-2(x+2y)(y-1)+y^2-2y+1 tại x+y=5
C= x^2-y^2-4x tại x+y=2
D= x^2+y^2+2xy-4x-4y-3 tại x+y=4
E= 2x^6+3x^3y^3+y^6+y^3 tại x^3+y^3=1
Bài 2: Chứng minh rằng
a) -9x^2+12x-5<0
b) 4/9x^2-4x+9/2>0
Bài 3: Tìm giá trị lớn nhất:
A= 4-2x^2
B=(1-x)(2+x)(3+x)(6+x)
C=-2x^2-y^2-2xy+4x+2y+5
D=-9x^2+24x-18
E=-x^4+2x^3-3x^2+4x-1