B=1/2-1/2^2+1/2^3-1/2^4+..... -1/2^2022+1/2^2023
Thu gọn B
so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
2023-1/2*(1+2)-1/3*(1+2+3)-1/4*(1+2+3+4)-...-1/2022*(1+2+3+4+...+2022)
Ta có: \(2023-\frac12\left(1+2\right)-\frac13\left(1+2+3\right)-\cdots-\frac{1}{2022}\left(1+2+\cdots+2022\right)\)
\(=2023-\frac12\cdot\frac{2\cdot3}{2}-\frac13\cdot\frac{3\cdot4}{2}-\cdots-\frac{1}{2022}\cdot\frac{2022\cdot2023}{2}\)
\(=2023-\frac32-\frac42-\cdots-\frac{2023}{2}=2023-\frac12\left(3+4+\cdots+2023\right)\)
\(=2023-\frac12\frac{\left(2023-3+1\right)\left(2023+3\right)}{2}=2023-\frac12\cdot\frac{2021\cdot2026}{2}=2023-\frac12\cdot2021\cdot1013\)
=-1021613,5
B= 1/2 + 1/3 - 1/4 +...- 1/2022 + 1/2023 C= 1/1012 + 1/1013+...+ 1/2022 + 1/2023
Tính: B-C
mọi người sửa nhanh giúp mik vs ạ
Ta có: \(B=\frac12+\frac13-\frac14+\frac15-\frac16+\cdots-\frac{1}{2022}+\frac{1}{2023}\)
=>\(B=\frac12+\frac13+\frac14+\frac15+\frac16+\cdots+\frac{1}{2022}+\frac{1}{2023}-2\left(\frac14+\frac16+\cdots+\frac{1}{2022}\right)\)
\(=\frac12+\frac13+\frac14+\frac15+\cdots+\frac{1}{2022}+\frac{1}{2023}-\frac12-\frac13-\cdots-\frac{1}{1011}\)
\(=\frac{1}{1012}+\frac{1}{1013}+\cdots+\frac{1}{2022}+\frac{1}{2023}\)
=C
=>B-C=0
2. Cho:
B= 1 - 1/2 + 1/3 - 1/4 +...+ 1/2021 - 1/2022 + 1/2023 C= 1/1012 + 1/1013 + 1/1014 +...+ 1/2021 + 1/2022 + 1/2023
Tính: B-C
Ta có; \(B=1-\frac12+\frac13-\frac14+\cdots-\frac{1}{2022}+\frac{1}{2023}\)
\(=1+\frac12+\frac13+\cdots+\frac{1}{2023}-2\left(\frac12+\frac14+\cdots+\frac{1}{2022}\right)\)
\(=1+\frac12+\ldots+\frac{1}{2023}-1-\frac12-\cdots-\frac{1}{1011}=\frac{1}{1012}+\frac{1}{1013}+\cdots+\frac{1}{2023}\)
=C
=>B-C=0
1. Rút gọn các biểu thức sau:
A= 1 - 2 + 3 - 4 + 5 - 6 + ... + 2021 - 2022 + 2023
A=(-1)+(-1)+...+(-1)+2023
=2023-1011
=1012
thu gọn a=1/2-1/2^2+1/2^3-1/2^4+...+1/2^2023-1/2^2024
\(A=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}-\left(\dfrac{1}{2}\right)^{2024}\)
\(A=\dfrac{2}{2^2}-\dfrac{1}{2^2}+\dfrac{2}{2^4}-\dfrac{1}{2^4}+...+\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{2024}}\)
\(A=\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+\dfrac{2^{2018}}{2^{2024}}+...+\dfrac{1}{2^{2024}}\)
\(2^2A=\dfrac{2^{2024}}{2^{2024}}+\dfrac{2^{2022}}{2^{2024}}+\dfrac{2^{2020}}{2^{2024}}+...+\dfrac{2^2}{2^{2024}}\)
\(\Rightarrow4A-A=3A=1-\dfrac{2}{2^{2024}}-\dfrac{1}{2^{2024}}\)
\(3A=1-\left(\dfrac{2}{2^{2024}}+\dfrac{1}{2^{2024}}\right)\)
\(3A=1-\dfrac{3}{2^{2024}}\)
\(A=\dfrac{1-\dfrac{3}{2^{2024}}}{3}\)
\(A=\dfrac{3\left(\dfrac{1}{3}-\dfrac{1}{2^{2024}}\right)}{3}\)
\(A=\dfrac{1}{3}-\dfrac{1}{2^{2024}}\)
giúp mk vs các bn. chiều nay mk phải nộp r
B = 1×3+2×3(mũ 2)+3×3(mũ 3)+...+2022×3(mũ 2022)+2023×3(mũ 2023)
\(3B=1.3^2+2.3^3+3.3^4+...+2022.3^{2023}+2023.3^{2024}\)
\(2B=3B-B=-3-3^2-3^3-...-3^{2023}+2023.3^{2024}\)
\(2B=2023.3^{2024}-\left(3+3^2+3^3+...+3^{2023}\right)\)
Đặt
\(C=3+3^2+3^3+...+3^{2023}\)
\(3C=3^2+3^3+3^4+...+3^{2024}\)
\(2C=3C-C=3^{2024}-3\Rightarrow C=\dfrac{3^{2024}-3}{2}\)
\(\Rightarrow2B=2023.3^{2024}-\dfrac{3^{2024}-3}{2}=\)
\(=\dfrac{2.2023.3^{2024}-3^{2024}+3}{2}=\dfrac{4045.3^{2024}+3}{2}\)
\(\Rightarrow B=\dfrac{4045.3^{2024}+3}{4}\)
a)2022.2023-2022/2021.2022+2022
b)1999.2000-1/1998.1997+3997
c)(1-1/2).(1-1/3).(1-1/4).(1-1/5)...(1-1/2022).(1-1/2023)
help me
tui làm được câu c thui
c) (1-1/2).(1-1/3).(1-1/4).(1-1/5)...(1-1/2022).(1-1/2023)
a: \(\frac{2022\cdot2023-2022}{2021\cdot2022+2022}\)
\(=\frac{2022\left(2023-1\right)}{2022\left(2021+1\right)}\)
\(=\frac{2022\cdot2022}{2022\cdot2022}=1\)
c: \(\left(1-\frac12\right)\left(1-\frac13\right)\cdot\ldots\cdot\left(1-\frac{1}{2022}\right)\left(1-\frac{1}{2023}\right)\)
\(=\frac12\cdot\frac23\cdot\ldots\cdot\frac{2021}{2022}\cdot\frac{2022}{2023}\)
\(=\frac{1}{2023}\)
2^2+6^3+12^4+......................................+[(k+1)*k]^(k+1)+.......................+(2022*2023)^2023
@Bé Bin bạn có biết cách giải không zậy