tìm các số a, b sao cho: \(a+b=\left|a\right|-\left|b\right|\)
Cho 2 đa thức \(f\left(x\right)=2x^2+ax+4\) và \(g\left(x\right)=x^2-5x-b\) (\(a,b\) là hằng số)
Tìm các hệ số \(a,b\) sao cho \(f\left(1\right)=g\left(2\right)\) và \(f\left(-1\right)=g\left(5\right)\)
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "
1) Tìm các số nguyên dương a và b sao cho \(a^2+5a+12=\left(a+2\right)b^2+\left(a^2+6a+8\right)b\)
2) Tìm các số nguyên m và n sao cho \(\left(m^2+n\right)\left(n^2+m\right)=\left(m-n\right)^3\)
3) Cho các số không âm a, b, c sao cho a + b + c = 3. Tìm GTNN của P = ab + bc + ca - \(\frac{1}{2}abc\)
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)
Tìm các số tự nhiên a,b,c sao cho \(a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\) là số nguyên tố.
mk chưa học đến lớp 9
xin lỗi bn nha
a) Tìm x biết: (3x-1)6=(3x-1)4
b. Cho a,b,c là các số khác 0 sao cho \(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}\). Tính giá trị của biểu thức: M=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Tìm các số tự nhiên a; b sao cho \(\left(2008.a+3.b+1\right).\left(2008^a+2008.a+b\right)=225\)
Cho biểu thức:
P= \(\frac{a^2}{\left(a+b\right)\left(1-b\right)}-\frac{b^2}{\left(a+b\right)\left(1+a\right)}-\frac{a^2b^2}{\left(1+a\right)\left(1-b\right)}\)
a) Rút gọn P
b) Tìm cặp số nguyên (a;b) sao cho P=3
a) Điều kiện : \(a\ne-b;b\ne1;a\ne-1\)
\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)
\(P=\frac{a^2+a^2b+a-b}{1+a}\)
\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)
\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)
P = a + ab - b
b)
P = 3
<=> a + ab - b = 3
<=> a(b+1) - (b+1) +1 - 3 = 0
<=> (b+1)(a-1) = 2
Ta có bảng sau với a, b nguyên
| b+1 | 1 | 2 | -1 | -2 |
| a-1 | 2 | 1 | -2 | -1 |
| b | 0 | 1 | -2 | -3 |
| a | 3 | 2 | -1 | 0 |
| so với đk | loại | loại |
Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}
Tìm các cặp số thực a và b sao cho mỗi cặp vecto sau bằng nhau:
a) \(\overrightarrow u = \left( {2a - 1; - 3} \right)\) và \(\overrightarrow v = \left( {3;4b + 1} \right)\)
b) \(\overrightarrow x = \left( {a + b; - 2a + 3b} \right)\) và \(\overrightarrow y = \left( {2a - 3;4b} \right)\)
a) Để \(\overrightarrow u = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l}2a - 1 = 3\\ - 3 = 4b + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\)
Vậy \(\left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\) thì \(\overrightarrow u = \overrightarrow v \)
b) \(\overrightarrow x = \overrightarrow y \Leftrightarrow \left\{ \begin{array}{l}a + b = 2a - 3\\ - 2a + 3b = 4b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\)
Vậy \(\left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\) thì \(\overrightarrow x = \overrightarrow y \)
Tìm tất cả các số nguyên a, b sao cho:
\(\left(a+3b+1\right)\left(2^a+a+b\right)=225\)
Câu hỏi của ♡♡♡我有你♡♡♡ - Toán lớp 7 - Học toán với OnlineMath
Cho a,b là các số dương sao cho ab=1
Tìm min \(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}.\)
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab=2.1=2.\)(theo giả thiết ab=1)\(\Rightarrow\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\ge\left(a+b+1\right).2+\frac{4}{a+b}=\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\)(1)
Áp dụng bất đẳng thức AM-GM (Cauchy) cho hai số không âm ta được:
\(a+b\ge2\sqrt{ab}=2\sqrt{1}=2\)
\(\left(a+b\right)+\frac{4}{a+b}\ge2\sqrt{\left(a+b\right).\frac{4}{a+b}}=2.\sqrt{4}=4\)
Suy ra \(\left(a+b\right)+\left(a+b\right)+\frac{4}{a+b}+2\ge2+4+2=8\)(2)
Từ (1) và (2) suy ra:\(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)
Vậy Min của biểu thức đã cho là 8, Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b\\ab=1\\a+b=\frac{4}{a+b}\end{cases}\Leftrightarrow a=b=1}\)