Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lê thị thu hồng
Xem chi tiết
lekhoi
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 13:34

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)

hay AH=7,2(cm)

lekhoi
Xem chi tiết
Htt7a
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 20:43

a: BC=10cm

C=AB+BC+AC=6+8+10=24(cm)

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

☆Châuuu~~~(๑╹ω╹๑ )☆
5 tháng 2 2022 lúc 20:48

undefined

Lê Phương Mai
Xem chi tiết
Etermintrude💫
5 tháng 5 2021 lúc 7:30

undefinedundefined

Võ Thị Tú
Xem chi tiết
Minh Hồng
12 tháng 5 2022 lúc 11:19

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Xét \(\Delta ABD\) và \(\Delta HBD\) có:

\(\widehat{BAD}=\widehat{BHD}=90^0\)

\(BD\) chung

\(\widehat{ABD}=\widehat{HBD}\) (tính chất phân giác)

\(\Rightarrow\Delta ABD=\Delta HBD\) (ch - gn)

c) Ta có \(\Delta ABD=\Delta HBD\Rightarrow AD=HD\)

Mà \(HD< DC\) (do \(\Delta HDC\) vuông tại \(H\))

\(\Rightarrow DA< DC\) 

Nguyễn Huy Tú
12 tháng 5 2022 lúc 18:07

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AC^2+AB^2}=10cm\)

b, Xét tam giác BAD và tam giác BHD có 

BD _ chung ; ^ABD = ^HBD ; ^BAD = ^BHD = 900

Vậy tam giác BAD = tam giác BHD ( ch-gn) 

NGuyễn Văn Thiều
Xem chi tiết
Lysr
8 tháng 5 2022 lúc 9:12

a. Xét tam giác vuông ABC 

Theo định lý Py - ta - go ta có :

AB2 + AC2 = BC2

=> 32 + AC2 = 52

=> 9 + AC2  = 25

=> AC2 = 16

=> AC = 4

Vậy AB < AC < BC

b. Xét tam giác BAM và tam giác BDM ta có :

BM chung

Góc BAM = góc BDM ( = 90 độ )

BA = BD ( gt)

=> tam giác BAM = tam giác BDM ( ch - cgv)

=> MA = MD ( hai cạnh tương ứng )

Xét tam giác AMN và tam giác DMC

góc AMN = góc DMC ( đối đỉnh )

MA = MD ( cmt)

góc MAN= góc MDC ( = 90 độ )

=> Tam giác AMN = tam giác DMC 

=> MN = MC

=> Tam giác MNC cân

Yến Mạc
Xem chi tiết
Trần Thùy Dương
12 tháng 6 2018 lúc 16:44

Bạn tự vẽ hình nha ^^

a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có 

\(AB=EB\left(GT\right)\)(1)

\(\widehat{BAD}=\widehat{BED}=90^o\)(2)

\(BD:\)Cạnh chung (3)

Từ (1) ;(2) và (3)

\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )

b) 

---Theo đề bài ta có :

\(AB=EB\left(GT\right)\)(1)

và  \(\widehat{ABC}=60^o\left(gt\right)\)(2)

Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều                   (đpcm)

--- Vì  \(\Delta ABE\)đều

\(\Rightarrow AB=BE=AE\)

Mà \(AB=6cm\)(gt)

...\(AE=EC\)

\(\Rightarrow EC=6cm\)

mà \(BE=6cm\)

Có  \(EC+BE=BC\)

\(\Rightarrow6+6=12cm\)

Vậy BC =12cm

Nguyễn Mai Linh
1 tháng 3 2021 lúc 21:06

Bạn tự vẽ hình nha ^^

a)--- Xét ΔABD và ▲ EBDcó 

AB=EB(GT)     (1)

ˆBAD=ˆBED=90o    (2)

BD:Cạnh chung (3)

Từ (1) ;(2) và (3)

ΔABD=ΔEBD (c.g.c)

b) 

---Theo đề bài ta có : AB=EB(GT)(1)

và  ˆABC=60o(gt)              (2)

Từ (1)và (2)➸ΔABE đều               (đpcm)

--- Vì  ΔABE đều nên:

AB=BE=AE

Mà AB=6cm(gt)

...AE=EC

⇒EC=6cm

mà BE=6cm

Có  EC+BE=BC

6+6=12cm

Vậy BC =12cm

vương bảo ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 6 2023 lúc 8:01

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

BA=BE

=>ΔBAD=ΔBED

b: Xét ΔBAE có BA=BE và góc B=60 độ

nên ΔBAE đều

=>BE=AB=6cm

=>BC=12cm