Tính A biết :\(A=\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+\frac{1}{285}+\frac{1}{437}\)
\(D=\frac{4}{21}+\frac{4}{77}+\frac{4}{165}+\frac{4}{285}+\frac{4}{437}+\frac{4}{621}\)
\(D=\frac{4}{21}+\frac{4}{77}+\frac{4}{165}+\frac{4}{285}+\frac{4}{437}+\frac{4}{621}\)
\(D=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(D=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\)
\(D=\frac{1}{3}-\frac{1}{27}\)
\(D=\frac{9}{27}-\frac{1}{27}\)
\(D=\frac{8}{27}\)
\(D=\frac{4}{21}+\frac{4}{77}+\frac{4}{165}+\frac{4}{285}+\frac{4}{437}+\frac{4}{621}\)
\(D=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(D=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\)
\(D=\frac{1}{3}-\frac{1}{27}\)
\(D=\frac{8}{27}\)
_Chúc bạn học tốt_
D= 4/21 + 4/77 + 4/165 + 4/285 + 4/437 + 4/621
D= 4/3.7 + 4/7.11 + 4/11.15 + 4/15.19 + 4/19.23 + 4/23.27
D= 1/3 - 1/7 + 1/7 -1/11 +1/11 -1/15 +1/15 -1/19 +1/19 -1/23 +1/23 -1/27
D= 1/3 - 1/27
D=9/27 - 1/27
D=8/27
tính giá trị biểu thức
\(A=\frac{-378.132+189.64}{15+18+21+......+45+48}\)
\(B=1,4.\frac{15}{14}-\left(\frac{4}{5}+\frac{2}{5}\right):2\frac{1}{5}-\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{\frac{25}{24}+\frac{15}{180}+\frac{20}{285}}\)
\(C=\frac{7+\frac{7}{12}-\frac{7}{144}+\frac{7}{60}}{5+\frac{6}{12}-\frac{5}{144}}.\frac{\frac{3}{4}-\frac{3}{16}+\frac{3}{64}-\frac{3}{256}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{34}}-\frac{1}{20}\)
Tính giá trị biểu thức
\(A=\frac{-378.132+189.64}{15+18+21+...+45+48}\)
\(B=1,4.\frac{15}{14}-\left(\frac{4}{5}+\frac{2}{5}\right):2\frac{1}{5}-\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{\frac{25}{24}+\frac{15}{180}+\frac{20}{285}}\)
Tìm x biết
\(\left(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+\frac{2}{19.30}+\frac{2}{19.34}\right).x=\frac{3}{276}\)
\(\Leftrightarrow x\cdot\left[\dfrac{1}{4}\left(\dfrac{4}{21}+\dfrac{4}{77}+\dfrac{4}{165}\right)+\dfrac{2}{19\cdot30}+\dfrac{2}{19\cdot34}\right]=\dfrac{3}{276}\)
\(\Leftrightarrow x\cdot\left[\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}\right)+\dfrac{32}{4845}\right]=\dfrac{3}{276}\)
\(\Leftrightarrow x\cdot\dfrac{71}{969}=\dfrac{3}{276}\)
hay \(x=\dfrac{969}{6532}\)
Tìm x thuộc N*, biết rằng
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
cái này là toán mà bạn, đâu phải vật lý
Tìm n thuộc N* biết rằng:\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+1n}=\frac{56}{673}\)
Mấy bn ơi, giúp mk vs
Tìm x, biết:
\(x-0,27=\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{25\times\left(\frac{5}{84}+\frac{3}{180}+\frac{4}{285}\right)}\)
Tính P;
\(P=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\times230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{7}+\frac{10}{3}\right)\div\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
Ai đúng mk tích, cảm ơn các bn
Tìm x :
x - 0,27 = \(\frac{73}{100}\)
x = \(\frac{73}{100}+0,27\)
x = 1
Cậu P khó quá mik chưa nghĩ ra cách tính nhanh nhất !
Cậu tự giải nhé !
Hok tốt
\(x-0,27=\frac{\frac{73}{77}+\frac{73}{165}+\frac{73}{285}}{25\times\left(\frac{5}{84}+\frac{3}{180}+\frac{4}{285}\right)}.\)
\(x-0,27=\frac{\frac{146}{105}+\frac{73}{285}}{25\times\left(\frac{8}{105}+\frac{4}{285}\right)}\)
\(x-0,27=\frac{\frac{219}{133}}{25\times\frac{12}{133}}\)
\(x-0,27=\frac{\frac{219}{133}}{\frac{300}{133}}\)
\(x-0,27=0,73\)
\(x=0,73+0,27\)
\(x=1\)
Tìm n\(\in\) N*, biết rằng:
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+.....+\frac{1}{n^2+4n}=\frac{56}{673}\)
nếu giải thích chi tiết mình cho 2 tick
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
<=> \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}=\frac{56}{673}\)
<=> \(4.\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}\right)=4.\frac{56}{673}\)
<=> \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{n+4-3}{3.\left(n+4\right)}=\frac{224}{673}\Leftrightarrow\frac{n}{3.\left(n+4\right)}=\frac{224}{673}\)
<=> 673n = 224.3(n+4)
<=> 673n = 224.3.n + 224.3.4
<=> 673n = 672n + 2688
<=> 673n - 672n = 2688
<=> n = 2688
Tìm n E N* biết:
\(\frac{1}{21}\)+\(\frac{1}{77}\)+\(\frac{1}{165}\)+...+\(\frac{1}{n^2+4n}\)=\(\frac{56}{673}\)
\(A=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
\(4A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{15}+...+\frac{1}{n^2}-\frac{1}{4n}=\frac{56}{673}\)
\(\Rightarrow4A=\)
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
\(\Rightarrow\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n\left(n+4\right)}=\frac{56}{673}\)
\(\Rightarrow\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}\right)=\frac{56}{673}\)
\(\Rightarrow\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{n}-\frac{1}{n+4}\right)=\frac{56}{673}\)
\(\Rightarrow\frac{1}{4}\left(\frac{1}{3}-\frac{1}{n+4}\right)=\frac{56}{673}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{n+4}=\frac{56}{673}:\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)
\(\Rightarrow\frac{1}{n+4}=\frac{1}{3}-\frac{224}{673}\)
\(\Rightarrow\frac{1}{n+4}=\frac{1}{2019}\)
=> n + 4 = 2019
n = 2019 - 4
n = 2015