Tính giá trị của biểu thức sau:
A=4/3.4/7+4/7.4/11+4/11.4/5+......+4/95.4/99
5a/ A= 4/3.4/7+4/7.4/11+4/11.4/15+...+4/95.4/99
b/ B= 7/2+7/6+7/12+...+7/9900
a thì đặt 4 ra ngoài sau đó tự tính theo cách đã học
câu b tương tự
Tính :
a, 3/2^2.8/3^2.15/4^2...899/30^2
b, 4/3.4/7+4/7.4/11+...+4/95.4/99
Tính bằg cách thuận tiện nhất:
1) 1995/-1996 :(19931993/19961996).-199319931993/199519951995
2) 5/9.7/13 +5/9.9/13-5/9.3/13
3) d.3/4+ d.5/6-d.19/12
4) (121/122.123/125+127/129).(1995/1996.17/16-21/15:16/17).(42/30.25/23-19/23.210/38)
5)4/3.4/7+4/7.4/11+4/11.4/15+...+4/95.4/99
6)
Tinh gia tri bieu thuc: A= 4/3.4/7+4/7.4/11+4/11.1/15+...+4/95.4/99
Tính giá trị các biểu thức sau.
a) A = 7^ 0 + 7^ 1 + 7^ 2
b) B =(7^5 + 7^9 ).(5^4 + 5^6 ).(2^3.4-2.2^4 )
c) C =3 ^2 .[(5^2 – 3) : 11] – 2^ 4 + 2.5^3
d) D = 9 ^2 − {5^ 2 − [5^ 2 − 2(4.5 − 3^ 2 )]}
Tính giá trị của biểu thức :
A = \(\frac{4}{3}.\frac{4}{7}+\frac{4}{7}.\frac{4}{11}+\frac{4}{11}.\frac{4}{15}+........+\frac{4}{95}.\frac{4}{99}\)
\(\Rightarrow A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{95.99}\)
\(A=4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{95.99}\right)\)
\(A=4.\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=\frac{4}{4}\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(A=\frac{32}{99}\)
\(\frac{4}{3}.\frac{4}{7}+\frac{4}{7}.\frac{4}{11}+\frac{4}{11}.\frac{4}{15}+...+\frac{4}{95}.\frac{4}{99}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Leftrightarrow A=\frac{32}{99}\)
Tính giá trị của biểu thức :
\(A=\frac{4}{3}.\frac{4}{7}+\frac{4}{7}.\frac{4}{11}+.......+\frac{4}{95}.\frac{4}{99}\)
\(\frac{A}{4}=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{95.99}\)
\(\frac{A}{4}=\frac{7-3}{3.7}+\frac{11-7}{7.11}+...+\frac{99-95}{95.99}\)
\(\frac{A}{4}=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(A=\frac{4.32}{99}\)
\(4.A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{95}-\frac{1}{99}\\ 4.A=\frac{1}{3}-\frac{1}{99}\\ 4.A=\frac{32}{99}\\ A=\frac{32}{99}:4\\ A=\frac{8}{99}\)
\(A=\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{95.99}\)
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\)
\(A=\frac{1}{3}-\frac{1}{99}\)
\(A=\frac{32}{99}\)
Vậy \(A=\frac{32}{99}\)
Bài 1: Tính giá trị các biểu thức sau
a, \(\left[2^{-3}-\left(\frac{3}{4}\right)^{-4}.\left(-\frac{1}{2}\right)^2\right]:\left[5-3.\left(\frac{4}{15}\right)^0\right]^{-2}\)
b, \(\frac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3.4^5}\)
c, \(\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)
d, \(\frac{5.\left(3.7^{15}-19.7^{14}\right)}{7^{16}+3.7^{15}}\)
Tính giá trị các biểu thức sau:
a) A = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100
b) B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.